

Voting PostgreSQL
Magnus Hagander

A short story...

So I got there late...

...but why?

Well, that's the story

Let's start somewhere far away

Norway

Norway

Voting order

● Some pre-voting
● Majority done on election day

– Opens 8AM, closes 9PM

– Paper ballots

– Counted locally

– Scanned centrally

– Incremental results posted from PM

Election Administration System

● Live
– Who can vote?

– Who did vote?

● Batch
– Scanned results

● Output
– Who is winning?

Election Administration System

● Locally developed application
– Originally inherited legacy...

● WildFly clusters for different works
– Almost entirely Hibernate

● Single PostgreSQL backend cluster
– 9.3 on RHEL

– Bare metal hardware, SSD

Primary

Standby

Primary
datacenter

Standby

Secondary
datacenter

Standby

Remote
datacenter

Everybody worried about perf

● Some experiences with previous solutions
● No full-scale performance tests

– Difficult to build proper tests

In general worked very well

● Mostly 15-20% load
– 48 core box, 32Gb RAM

● Very fast response times
● Bottlenecks were elsewhere

– (and there were a number)

Two noteworthy events

Unintentional serializing

● Scanning interface used “homemade
sequences”

● Trigger that updated individual row in table
● Not caught in testing

– Not enough concurrency tested

– Actual scanning application also fairly slow

Unintentional serializing

● Tracked down with pg_locks
● Replaced with SEQUENCE

Missing indexes

● One very central table
● Used very central late in the process

– Few 1000s queries / second

– Simple JOINs

● Performed very well
– Until it grew

Missing indexes

Missing indexes

● Noticed by general system load growing
● Tracked down with pg_stat_statements
● Fixed with CREATE INDEX CONCURRENTLY

Missing indexes

Conclusion

● Democracy through PostgreSQL!

