
Markus Nullmeier

Zentrum für Astronomie der Universität Heidelberg
Astronomisches Rechen-Institut

mnullmei@ari.uni.heidelberg.de

Accelerating queries of
set data types with GIN, GiST, and

custom indexing extensions

Sets

● Come up as a model of various real-world data
● Not available as such in PostgreSQL, but

– Use the keys of JSONB or hstore as set elements:
 SELECT '{"elem1": 1, "elem2": 2, "elem3": 1}'::json;

– Use sorted arrays:
 SELECT '{3,11,17,29}';

Some PostgreSQL set operations

create extension intarray;

● Overlap SELECT '{5,17,23}'::int[] && '{3,11,17,29}'::int[];

● Subset SELECT '{17,23}'::int[] && '{3,23,29}'::int[];

● Union SELECT '{}'::int[] | '{1,3,5}'::int[];

● Intersection SELECT '{2}'::int[] & '{1,2,3}'::int[];

Indexing for fast queries

● Typical techniques
– “inverted file” = inverted index (see RUM talk), with:

● elements as keys, sets as indexed columns
● Very good for accelerating single-element overlap
● Available for intarray, JSONB, hstore

– RD-Trees
● Useful for superset queries
● Available for intarray via GiST

Evaluation

● Built-in or ‘contrib’ features sufficient for most uses
– Small to medium-sized sets
– Index support is there

● Limitations
– All set operations must load the whole set from disk

● AFAIK, being worked on for JSONB
– May be inefficient for domain-specific set types

A use case from astronomy

● Sky coverage of astronomical surveys

Use case: details (I)

● Sky coverage sets may very detailed, i. e., large
● Fast response times for public data required
● Domain-specific standard (IVOA MOC, Healpix-based)

– “multi-order coverage”
● Many astronomical on-line databases use PostgreSQL

Use case: details (II)

● Run-length compression for spatial locality
– Nearby sky elements encoded as interval of 2 numbers

F

Custom data type

{[2, 6) [17, 30) [33, 40) [123, 124) [332, 438)}

● Set of intervals of integers
– = boundaries at finest level of resolution
– Non-overlapping
– Stored in sorted order

● Typical operations
– Subset for single numbers (points) or sets
– Set overlap

Make sequential scan fast

● Loading a whole sky map just for one point is inefficient
● Use sliced access of on-disk “TOAST” data
● Serialise each sky map B-tree-like

– read-only
– Page size = TOAST fragment size

● Write once means:

– No space wasted, tree is nicely balanced
– No penalty for full sequential access

Still not fast enough...

● Ordinary, element-wise inverted indexes impossible
● ...but using intervals as keys would do the trick

– if they do not overlap

● RUM to the rescue

sorted intervals sets of pointers to sky maps

 [17, 30) { obj7, obj11 }

 [843, 2577) { obj2, obj108, obj109 }

 [5756, 9433) { obj108, obj732, obj11030 }

... ...

Sky map indexing

● Intervals-as-keys
– must not overlap, else inefficient
–  implementation with GIN impossible

● RUM to the rescue!
– usable as installable index extension
– PostgreSQL license
– must be somewhat modified...

Project “OUZO”

● As of yet undisclosed inverted acronym
● Relatively high-level extension of RUM

– Complete reuse of concurrent B-tree code
● for entry tree as well as for posting trees

– Will be backward compatible
● Generic for any kind of interval key type

– and entry type
● Nearing completion

OUZO: key changes to RUM

● Insertion to the index must split the intervals-as-keys
– of the inserted sky map
– and all preexisting keys

● B-tree scan requires ‘lower bound’ search
– For insertion and for queries

● Additional support functions for the operator class

Insertion interval split example

● To insert: interval [96,128) of obj108

● Index before:

● Index after insertion:

● One of 13 possible cases

 [32, 96) { obj7, obj11 }
 [96, 128) { obj7, obj11, obj108 }

 [32, 128) { obj7, obj11 }

Concurrency of index insertion

● At most 3 intervals must be changed at the same time
– locking stops other backends to modifying entry tree

● ‘Long’ intervals are inserted on step at a time
– Release locks after each elementary step
– Should give decent concurrency

● Not tested yet

‘lower bound’ search for RUM

● Return exact match of start of interval or next higher
– RUM only uses exact match so far
– Existing implementation ‘almost’ gives lower bounds

● Allows much code reuse
– RUM features C-style object orientation for its B-trees
– Re-implement 2 methods: ‘find in tree / leaf page’

New ‘SQL’ support functions

● Specified in ‘create operator class’ DDL instruction
– makes indexes usable for specific data types

● internal get_left_boundary(interval)
● internal get_right_boundary(interval)
● int compare_boundaries(internal, internal)
● interval make_interval(internal, internal)

– ‘internal’ : basically opaque pointers to boundaries

Markus Nullmeier

Zentrum für Astronomie der Universität Heidelberg
Astronomisches Rechen-Institut

mnullmei@ari.uni.heidelberg.de

Thank you for listening!

Questions?

