Tencent Big Data

How Tencent uses
PGXZ(PGXC) in WeChat
payment system

jason(ZEFR)

jasonysli@tencent.com

e ———————————————————
About Tencent and Wechat Payment

® Tencent, one of the biggest internet
Q companies in China.

®\\Vechat, the most popular social network APP In

China.
WeChat
a“’“; g~ ®\Wechat Payment, wireless, fast , secure,
(= efficiency payment solution provided by Wechat.

Weehat

Crosy border payment

Why PGXZ(PGXC)

®Data size is HUGE(30TB per year and increasing): database

cluster

®SQL is more flexible and popular(Compared to key value and

other solution)
®Complex query(JOIN ACROSS multi-datanode)
®Distributed transaction(Easy to use)
®High transaction throughoutput(Peak 1.5 Million per min)

®Capability of horizontal scale out(Read and Write workload)

S
PGXZ Architecture: 5 aspects

App

Node
(Master)

Coordinator

Node
(Master)

Coordinator

Node
(Master)

Node
(Master)

Interface: Business
SQL Model: OLTP

Complex query: Distributed
Join over multi- Transaction

nodes

MPP : Share
Nothing

Y () &2
PGXZ Architecture:

Coordinator :
1. Access entrance of the cluster

Sharding data

[Ao J

Routing shard

w0

Process tuples of transaction over

multi-nodes

5. Only catalog, no user data

Coordinator Coordinator

DataNode:

1. Store application data

2. DML ops against data resided
in this node

3. Replication

GTM :

1. Manage transaction traffic

Schema :

Node Node Node
(Slave) (Slave) (Slave)

N e e N e N e N

' v 7 v 7 \ \
: Data | : Data | : Data 1 : Data 1
I : I : I : I : 1. One copy for every node
' I ' I ' I ' I

2. Every coordinator has the same

global catalog info.

Q) sRESEs

Online add/remove node--Data Sharding

PGXC

-~

rows

Hash(row|¥#Nodes)

hash_value = Hash(row)
nodeid= hash_value % #nodes

MUST rehash all data of
whole cluster when

~

kadd/remove datanode Y

PGXZ

-

~

Frows

|
%
- [[|

Data routing is decoupled from
the number of data nodes by

\addlng Logical Shard Map -

Loglc Shard Map

shardid = hash(row)
nodeid = map(shardid)

P
Online Scale out--Steps

|

[monitor

] Monitor :
1. Add data node to cluster

2. Make a PLAN of moving data to new data
node
1. A PLAN consists of several data
moving TASKS

2. One data moving TASK can move

several shards
3. One data moving TASK is a atomic

operation

Online add/remove node-Data Moving

Dump stock data
from source data node

N) sRE

A 4

Restore stock data
to target data node

1. Start to dump stock data with a snapshot

2. Start logical decoding with same snapshot

Ensure there is no overlap or miss between stock
data and incremental data.

\ 4

1. Restore stock data to target data node

Get incremental data
from source data node

|

1. Getincremental data from source data node
Ensure there is no overlap or miss between two
iterations of logical decoding(incremental

data)

Restore incremental data
to target data node

) |

- i

1. Restore Incremental data to target data node

2. Go to next iteration

If rows written at this iteration is less than a
threshold, then go to update routing info

Update
routing info

1. Block writing at moving data(shard/partition),
2. Update routing info at all of coordinators,
3. Release blocking (20ms ~ 30ms)

z—a
- |

Q) sRESEs
Multi-Groups: Handle huge merchants(Data Skew)

e |
T

Small Key Group: Data belongs to one merchant resides at only one data node.
O No distribute transaction when writing one small merchant.
O No join across multiple data nodes when query data from one small
merchant.
Big Key Group: Scatter One merchant data to all of data nodes inside the group. One
merchant data generated in same day reside at same data node.
O No matter how big the merchant is, it can be stored in this cluster.

Q) sRESEs
Multi-Groups: data stored separately by access frequency (

Cost Saving)

2016/06

2016/05
[|
2016/04
]
2016/03
]

2016/02
2016/01

Hot data group Cold data

High Frequency data Low Frequency data

High Performance Hardware High Volume Hardware

P
Multi-Groups: Routing to 4 groups

4)

Coordinator
Hot/Cold Hot Data | Cold Data create_time
_____________________________ e
v 3
Small/Big _ , merchant_id
Big Key list Big Key List
NO YES NO YES
Shard shardid
routing shard map shard map shard map shard map
\ J

- -

Small Key Big Key Small Key Big Key

Group(Hot) Group(Hot) Group(Cold) Group(Cold)

11

_ . Q) sRESEs
Plan optimization--Huge Merchant order query on

90 million rows
®SQL:select * from t_trade ref

where (ftotal _amount between 1
and 683771 and fcreate_time >=
Coordinator '2015-07-31 00:00:00' AND
fcreate_time < '2015-08-30
00:00:00" and fmerchant_id =
7777777) ORDER BY
ffinish_time DESC LIMIT 10
offset x;

®Table partitioned by month on
the created time of row

®Create multi-column index on
fmerchant_id and ffinish_time.
ffinish_time is used for order by.

Huge merchants group

M+0
M+I
M+2
M+3

M+N

S
Plan Optimization—Plan detall

RDER BY ffinish_time DESC LIMIT 10 offset x;

A Merge Append

[\

Huge merchants group \
BY ffinish_time DESC LIMIT 10 offset x; ORDER BY ffinish_time DESC LIMIT 10 offset x;

/ oros

M+0 Index scan

Index scan

M+l

Index scan Index scan

— Merge Append ~— Merge Append

)

M+2 Index scan

M+N

®CN pushes down limit offset.

®DN uses index scan for each partition.

®DN combine multi partitions by Merge Append.
®CN combines multi datanodes by Merge append.

Index scan

Index scanjs Index scanjp®

S —————

Plan optimization-performance result

QPS
6000
5000 > 29
4000
TPS3000
2000
1000 1233

0
32 100 200 400 800
SESSION NUBER

latency (MS)

128 5 ®Finish query within less than

120 50ms.

100

80

60

40 ®QPS canreachupto 5

* I thousand.

32 100 200 400 800
SESSION NUBER

e ———————————————————
Load Balance:Use standby datanodes to
provide read only service

Datanodel
_ Datanodel b
Read&Write standby

Coordinator Hot Standby Coordinator

Datanode?
standby

Datanode?

@ Separated kind of coordinators
®Read only coordinators’ catalog have entries of hotstandby datanodes

®Master datanode ships log to standby in hot standby mode

Q) sRESEs
Load Balance:Use standby datanode to

archive xlog

Archive Xlog

Datanodel

Datanodel

®High work load on master datanode

standby

®Use standby datanode to do the archive job

S —————

Online Table reorginize:Apend only heap mode

Y

INSERT

/N

/ FREESPACE MAP \

-

/

HEAP

> APPEND ONLY MODE

STOCK Tuple | NEW Tuple

HEAP

* Append tuple to the end of Heap, so we can know the new coming tuple
» Append only mode can switch on/off

S
Online Table reorginize:Shared CTID plpelme

CTID

CTID

~< -

» Use shared pipeline to transfer tuple modification to VACUUM FULL process
» General postgres write to the shared pipeline
« Vacuum full process read citd info from the pipeline

S —————

Online Table reorginize:detail steps

[BEGIN |

QY smusE

S y

-_——
-

1
|
2_ “
b 1
__i\;_,.. D —
| S _
_ 1
|
-]
I : |
" 1
“m m “
28]
1 Im I|
1 U) Y
| N = _
1 m : | _
| m |||||| _
1 : - _
| m IIIIII _
_|||||m _
. |
——- _
! N
1 m “
; N
1 m “
| m _
1 m _ _
| : m _
1 1m 5
| Cm mM “
O _
1 m “
| m _
1 " _
| m _
_n_n.v : _
S " _
! N
_% “
_h " _
N _
| m “
1 m _
| m _
1 " 2 _
| m W _
g “
| o O _
: :
|
1
|
1
|
1

S
PGXZ @WeChat Payment

N odes:
2 GTMs (master-slave)
7 Coordinators

31 pairs of Data Nodes
17 pairs for small key group(hot)
8 pairs for huge key group(hot)
3 pairs for small key group(cold)
3 pairs for huge key group(cold)

2017/4/6 21

S A R
Next step job

®Upgrade PGXZ(PG 9.3.5) to 9.6.X(Or may rebase on PGXL)

®Try to contribute Vacuum full concurrently

