
How Tencent uses
PGXZ(PGXC) in WeChat

payment system

jason(李跃森)

jasonysli@tencent.com

About Tencent and Wechat Payment

Tencent, one of the biggest internet
companies in China.

2017/4/6

Wechat, the most popular social network APP in
China.

Wechat Payment, wireless, fast , secure,
efficiency payment solution provided by Wechat.

3

Why PGXZ(PGXC)

Data size is HUGE(30TB per year and increasing): database

cluster

SQL is more flexible and popular(Compared to key value and

other solution)

Complex query(JOIN ACROSS multi-datanode)

Distributed transaction(Easy to use)

High transaction throughoutput(Peak 1.5 Million per min)

Capability of horizontal scale out(Read and Write workload)

4

PGXZ Architecture: 5 aspects

Coordinator Coordinator

App

GTM

Data

Node

(Master)

Data

Node

(Slave)

Data

Node

(Master)

Data

Node

(Slave)

Data

Node

(Master)

Data

Node

(Slave)

Data

Node

(Master)

Data

Node

(Slave)

Interface:

SQL

MPP：Share

Nothing

Distributed

Transaction

Business

Model: OLTP

Complex query:

Join over multi-

nodes

5

PGXZ Architecture:

Coordinator Coordinator

App

GTM

Data

Node
(Master

)

Data

Node
(Slave)

Data

Node
(Master

)

Data

Node
(Slave)

Data

Node
(Master

)

Data

Node
(Slave)

Data

Node
(Master

)

Data

Node
(Slave)

Coordinator：

1. Access entrance of the cluster

2. Sharding data

3. Routing shard

4. Process tuples of transaction over

multi-nodes

5. Only catalog, no user data

DataNode:

1. Store application data

2. DML ops against data resided

in this node

3. Replication

GTM：

1. Manage transaction traffic

Schema：

1. One copy for every node

2. Every coordinator has the same

global catalog info.

6

Online add/remove node--Data Sharding

DataNode DataNode DataNode

rows

Hash(row,#Nodes)

hash_value = Hash(row)

nodeid= hash_value % #nodes

MUST rehash all data of
whole cluster when
add/remove datanode

DataNode DataNode DataNode

Logic Shard Map

Hash(row)

rows

shardid = hash(row)

nodeid = map(shardid)

Data routing is decoupled from

the number of data nodes by

adding Logical Shard Map

PGXC PGXZ

7

Coordinator

DN DN
DN

(new)

slave slave slave

monitor
Monitor：

1. Add data node to cluster

2. Make a PLAN of moving data to new data

node

1. A PLAN consists of several data

moving TASKS

2. One data moving TASK can move

several shards

3. One data moving TASK is a atomic

operation

task1

task2

Online Scale out--Steps

8

Online add/remove node-Data Moving

Dump stock data
from source data node

Restore stock data

to target data node

Get incremental data
from source data node

Restore incremental data
to target data node

Update
routing info

1. Start to dump stock data with a snapshot
2. Start logical decoding with same snapshot
Ensure there is no overlap or miss between stock

data and incremental data.

1. Restore stock data to target data node

1. Get incremental data from source data node
Ensure there is no overlap or miss between two

iterations of logical decoding(incremental
data)

1. Restore Incremental data to target data node
2. Go to next iteration
If rows written at this iteration is less than a

threshold, then go to update routing info

1. Block writing at moving data(shard/partition),
2. Update routing info at all of coordinators,
3. Release blocking (20ms ~ 30ms)

9

Multi-Groups: Handle huge merchants(Data Skew)

Data

Node

Data

Node

Data

Node

Data

Node

Data

Node

Data

Node

Data

Node

Small Key Group Big Key group

CN CN

GTM

App App

Small Key Group: Data belongs to one merchant resides at only one data node.
 No distribute transaction when writing one small merchant.
 No join across multiple data nodes when query data from one small

merchant.
Big Key Group: Scatter One merchant data to all of data nodes inside the group. One
merchant data generated in same day reside at same data node.

 No matter how big the merchant is, it can be stored in this cluster.

CN CN

10

DataNodeDataNodeDataNode

Multi-Groups: data stored separately by access frequency（
Cost Saving）

DataNode

Hot data group

High Frequency data

Cold data

group

2016/01

2016/02

2016/03

2016/04

2016/05

2016/06

Coordinator

2016/01

2016/02

2016/03

2016/04

2016/05

2016/06

High Performance Hardware High Volume Hardware

Low Frequency data

11

Multi-Groups: Routing to 4 groups

Coordinator

DN DN

Small Key

Group(Hot)

DN DN

Big Key

Group(Hot)

DN DN

Small Key

Group(Cold)

DN DN

Big Key

Group(Cold)

Hot/Cold create_timeHot Data

Small/Big
Big Key list

NO YES

Big Key List

NO YES

merchant_id

shardidShard

routing shard map shard map shard map shard map

Cold Data

DN

Plan optimization--Huge Merchant order query on

90 million rows

DN

Huge merchants group

Coordinator

M+0

M+1

M+2

M+3

M+N

SQL:select * from t_trade_ref
where (ftotal_amount between 1
and 683771 and fcreate_time >=
'2015-07-31 00:00:00' AND
fcreate_time < '2015-08-30
00:00:00' and fmerchant_id =
7777777) ORDER BY
ffinish_time DESC LIMIT 10
offset x;

Table partitioned by month on
the created time of row

Create multi-column index on
fmerchant_id and ffinish_time.
ffinish_time is used for order by.

Index scan

DN

Index scan

Index scan

Index scan

Plan Optimization—Plan detail

M+0

M+1

M+2

M+N

Merge Append

Coordinator

Merge Append

Huge merchants group

CN pushes down limit offset.

DN uses index scan for each partition.

DN combine multi partitions by Merge Append.

CN combines multi datanodes by Merge append.

Index scan

DN

Index scan

Index scan

Index scan

Merge Append

ORDER BY ffinish_time DESC LIMIT 10 offset x;

ORDER BY ffinish_time DESC LIMIT 10 offset x; ORDER BY ffinish_time DESC LIMIT 10 offset x;

Plan optimization-performance result

1233

3587

5631 5652 5429

0

1000

2000

3000

4000

5000

6000

32 100 200 400 800

TPS

SESSION NUBER

QPS

23 26
35

72

145

0

20

40

60

80

100

120

140

160

32 100 200 400 800

SESSION NUBER

latency (MS)

Finish query within less than
50ms.

QPS can reach up to 5
thousand.

Load Balance:Use standby datanodes to
provide read only service

Coordinator

Datanode1

Datanode2

Coordinator

Datanode1

standby

Datanode2

standby

Read&Write
Read

Hot Standby

Separated kind of coordinators

Read only coordinators’ catalog have entries of hotstandby datanodes

Master datanode ships log to standby in hot standby mode

Load Balance:Use standby datanode to
archive xlog

High work load on master datanode

Use standby datanode to do the archive job

Datanode1
Datanode1

standby

HDFS

Archive Xlog

Online Table reorginize:Apend only heap mode

FREESPACE MAP

HEAP HEAP

INSERT

NEW Tuple

APPEND ONLY MODE

STOCK Tuple

• Append tuple to the end of Heap, so we can know the new coming tuple

• Append only mode can switch on/off

Online Table reorginize:Shared CTID pipeline

General Postgres(DML)

VACUUM FULL CON

General Postgres(DML)

CTID

Write

Read

CTID

• Use shared pipeline to transfer tuple modification to VACUUM FULL process

• General postgres write to the shared pipeline

• Vacuum full process read citd info from the pipeline

Online Table reorginize:detail steps

BEGIN

Build new heap

Build indexes of new heap

Swith on Append only

Heap Copy Apply new change

NO

yes

Data change small enough

BLOCK DML

Apply last change

Swap table relfilenode

Swap index relfilenode

Drop old table and index

End

Copy stock data item by item

Rebuild new table index

High Availability--Disaster redundancy across cities and IDCS

JCenter0

ZKServer0 ZKServer1 ZKServer2

JCenter1 JCenter2

CAgent0 CAgent1 CAgent2

IDC0 IDC1 IDC2

Shenzhen Shanghai

GTM CN CN CN

MDN0 MDN1

SDN1_1 SDN0_1

SDN0_2 SDN1_2

MasterSlave Slave

2017/4/6 21

PGXZ @WeChat Payment

Nodes：

2 GTMs（master-slave）

7 Coordinators

31 pairs of Data Nodes

17 pairs for small key group(hot)

8 pairs for huge key group(hot)

3 pairs for small key group(cold)

3 pairs for huge key group(cold)

Next step job

Upgrade PGXZ(PG 9.3.5) to 9.6.X(Or may rebase on PGXL)

Try to contribute Vacuum full concurrently

My team

24

