
Hacking with Postgres 11
– pg_threads

Piotr Jarmuż, Allegro.pl

PgConf.Russia 2019 – Feb 4/6 2019, Moscow

2

• Introduction about me and my company

• PostgreSQL 11 stored procedures current state and history

• Writing extensions – technical background

• pg_threads – building POSIX thread API using PostgreSQL extension (3)

• How does it work – example usage

• Transactional and nontransactional API – another extension (3)

• How does it work – example usage

• Putting it all together – solving a Wordament game in single thread

• Game solution using pg_threads – scaling up

• Adding another node – scaling out

• Conclusions

Agenda

3

• How developers see RDBMS vs. what really a modern RDBMS is

• PostgreSQL offers 2D extensibility: create language: create procedure

• PostgreSQL default language is PL/pgSQL

• in PostgreSQL core since 1998 v6.4- loosely based on Oracle PL/SQL

• PL/pgSQL functions, procedures, triggers fully fledged procedural language

• reduced network traffic, encapsulation, security

• low level "C” functions – usually base for PostgreSQL extensions

• resources – official documentation -

https://www.postgresql.org/docs/11/static/server-programming.html

• tutorials - http://www.postgresqltutorial.com/postgresql-stored-procedures/

PostgreSQL stored procedures current state and history

4

• PostgreSQL is a multiuser, multiprocessing environment

• in the simplest each psql session constitutes an execution context

• in stock version we lack a powerful abstraction of threads

• extension to the rescue – pg_threads

• abstract API borrowed from POSIX threads

✓ create_thread(name,thread_proc,hostname:=NULL);

✓ start_thread(name);

✓ join_thread(name);

✓ destroy_thread(name);

Execution contexts in PostgreSQL

5

• using libpq client library

• asynchronous query execution

• exposing thread state via regular table thread_list

• using PostgreSQL backend processes as thread containers

• a thread has a state CREATED,RUNNING,FINISHED

• still in statu nascendi – API may change in future

• data separation – local variables, local temporary tables – private per thread

• data sharing – regular PostgreSQL tables – shared among threads

• time for simple demos: sleepers and idlers

Extension: pg_threads

6

• By default threads can use regular Postgres tables to communicate

• Using tables is transactional and lacks synchronization primitives

• Need for well defined synchronous/asynchronous communication API

• Non-transactional API – pg_pipe – loosely based on UNIX pipes

• Private and public pipes, blocking and nonblocking mode - timeout

• Non persistent, all unreceived messages lost on instance restart

• Uses dynamic background worker process – pipe server

• Useful for debugging, communication with external service

• Multiplexing large number of users over fewer connections

• Independent transactions

Threads need to communicate – non-transactional API

7

• Stock Postgres version has LISTEN, NOTIFY, pg_notify

• Has limitations, no timeout and difficult to pass data programatically

• For complementary purposes – pg_alert – transactional communication

• Transaction based, blocking and nonblocking mode – timeout

• Alerts are sent only sent on COMMIT

• Loosely based on UNIX signals but has idempotency property

• For communication with external service on transaction boundaries

• Uses pg_pipe + Postgres native advisory locks API

Threads need to communicate – transactional API

8

• Threads should also be able to expose its current progress

• In stock version possible writing to log or on a console: raise notice

• Another module pg_app_info implements this feature

• Exposes non-transactionally extra thread info (module, action)

• Info can be updated independently on the transaction boundaries

• Data is visible in a table that can be joined to pg_stats_activity

• Useful for monitoring, tuning and debugging via regular select

• Uses pg_pipe + background process for session tracking

Threads need to communicate – tracking thread/session
progress

9

• original from Microsoft

• popular as mobile app

• displays a board 4x4 with random letters

• goal is find as many words as long as possible

• 120 sec for solution

• 3 letter minimum length

• no reuse of board tiles in current run

• great for learning new words :)

Wordament game

CART

10

• data structures

✓ current word being built – local variable

✓ board representing state of the game - temporary table

✓ solution table for found words - temporary table

✓ dictionary for checking valid words - regular PostgreSQL table

• algorithm used – depth first search tree with dynamic decision pruning

• Unicode support for many languages

$> (echo "begin;"; aspell -d ru dump master | aspell -l ru expand |

sed 's/ /\n/g' | (sed -r 's/(.*)/\U\1/g'| sort | uniq -i| sed = | sed

'N;s/\n/\t/'";s/'/''/g"| sed -r "s/(.*)\t(.*)/insert into words_ru

values (\1,'\2');/g"; echo "commit;")) | psql -d wordament

Solution - single thread

11

• let’s play!

• psql> select play(‘xtoe evrc aean ygas’);

Solution - single thread

12

psql> select play(‘xtoe evrc aean ygas’);

CARNAGE

CAVERNS

CORNAGE

CRANAGE

EXTRAVAGANCE

(275 rows)

Time: 2413.135 ms

Solution - single thread

13

• in general game theory is a branch of mathematics

• lots of practical applications in economy, military

• easily parallelizable – “embarrassingly parallel”

• Wordament game is no other than that – inherent parallelism

• up to 16 independent search trees can be run in parallel

Inherent parallelism in game

14

• refactoring code a bit

• partitioning root search for distributing load

• replicating game state

• expanding data structures - new table gsolution

• it scales up!

Solution - multiple threads

15

• scaling out > scaling up – use commodity hardware

• using pg_logical publication and subscription

• another node set-up in logical replication – asymmetric – pg_logical is

unidirectional

• 2 sets of PUB/SUB: input and output

• input publication pushes input data to slave(s)

• output publication pushes output data to master – optional part

• alternatively master fetches remote data via FDW

• threads extension already support remote threads – execution context

distribution

• pg_logical – data distribution/replication

• we can stick to paradigm – process data locally

• interesting results with BDR – totally symmetric architecture – not tested

Scaling out – another node, pg_logical

16

• no refactoring this time - we are already parallel

• enable slave host

• just run the same parallelized version

• let built-in thread scheduler pick up the hosts for running

• language tables converge via input publication -> to slave(s)

• gsolution table converges results via output publication/subscription -> to

master

• it scales out!

Solution - multiple threads, multiple nodes

17

Solution - multiple threads, multiple nodes

MASTER SLAVE

input publication/subscription

output publication/subscription

18

• PostgreSQL is inherently parallel environment

• needs a little user support in parallelization – user assisted

• more and more contexts use parallel workers already – out of the box

• scaling up and out – thread extension + logical replication and/or sharding

• next step look at PostgreSQL dynamic background processes

• try out threads in BDR environment

• PostgreSQL is a powerful computational environment that can be main data

hub in your data center

Conclusions

Thank you for your attention.
Questions?

