
Architecting petabyte-scale analytics by

scaling out Postgres on Azure with Citus

Alicja Kucharczyk

EMEA Global Blackbelt OSS Data Tech Specialist

Moscow, 2020-02-05

Nothing
Compares To
VACUUM/The
Ballad of Bloat

Questions?

Why am I here?

Agenda

What?

Why?

Where?

The naming
thing

Hyperscale

(Citus)

Hyperscale (Citus)

• Open source extension
• Pure Postgres, not a fork
• Turns Postgres into distributed, sharded database
• All the benefits of Postgres, without worry about

scale

Hyperscale (Citus)

• Open source extension
• Pure Postgres, not a fork
• Turns Postgres into distributed, sharded database
• All the benefits of Postgres, without worry about

scale

Why I like Hyperscale
(Citus)?

Why Microsoft
likes Hyperscale
(Citus)?

How do you know if the next update
to your software is ready for

hundreds of millions of customers?

Internal RQV analytics dashboard

RQV analytics dashboard is a critical tool
for Windows engineers, program managers,
and execs.

The short story

Min Wei, Principal Engineer at
Microsoft

discovered the open source Citus
extension to Postgres by listening
to a recorded conference talk on

his drive home

Impressed with the early results,
he transitioned the project from a
proof of concept into an official

project.

A few months later Microsoft had
acquired Citus Data.

Measuring
the quality of

Windows

• “Release Quality View” (RQV) dashboard

• tracks 20,000 diagnostic and quality metrics

• over 800M unique devices monthly

• supports over 6 million queries per day

• hundreds of concurrent users

• 1000s of monthly active users

• 100s of dashboard pages

Production
database

cluster

2816 Cores, 18TB DRAM,

1PB Azure Premium Storage,

Multi-PB Azure Blob Storage - for the staging
queue and raw Windows event data

• 2 Physical clusters behind a query router (Azure
Web Service and Azure Redis Service)

• Ingest and delete ~5TB data per day

• P75 query latency ~90ms/200ms (response times
for 75 percent of queries are less than 200
milliseconds)

• Support long running queries up to 4 mins.

• Support batch scheduled jobs that can run up for
2hours

Run Anywhere

On-Premises
In the Cloud - Azure
Database for
PostgreSQL

M IC R O S O FT C O N FID E N T IAL – IN T E R N AL O N L Y

Azure Database for PostgreSQL is available in

two deployment options

Single Server

Fully-managed, single-node PostgreSQL

Example use cases

• Apps with JSON, geospatial support, or full-text search

• Transactional and operational analytics workloads

• Cloud-native apps built with modern frameworks

Hyperscale (Citus)

High-performance Postgres for scale out

Example use cases

• Scaling PostgreSQL multi-tenant, SaaS apps

• Real-time operational analytics

• Building high throughput transactional apps

Enterprise-ready, fully

managed community

PostgreSQL with built-in HA

and multi-layered security

We’re talking about

Hyperscale (Citus)

today

Shard your Postgres database across multiple nodes

to give your application more memory, compute,
and disk storage

Easily add worker nodes to achieve horizontal scale

Scale up to 100s of nodes

Scale horizontally across hundreds of cores with Hyperscale (Citus)

Select from table Coordinator

Table metadata

Select from table_1001

Select from table_1003

Select from table_1002

Select from table_1004

Data node N

Data node 2

Data node 1
Table_1001

Table_1003

Table_1002

Table_1004

Each node PostgreSQL with Citus installed

1 shard = 1 PostgreSQL table

Sharding data across multiple nodes

Terminology

Coordinator – Stores Metadata. Node which application connects to.

Worker / Data nodes – Nodes which store data in form of shards.

Sharding – Process of dividing data among nodes.

Shards – A partition of the data containing a subset of rows.

Co-location

Co-location based on data-type of the distribution column. Not the name of the

column.

Co-location handles

Joins

Foreign keys/ Primary keys

Rollups

Others in future slides…

Co-located join

• APPLICATION

SELECT

FROM

WHERE

AND

count(*)

ads JOIN campaigns ON

ads.company_id = campaigns.company_id

ads.designer_name = ‘Isaac’

campaigns.company_id = ‘Elly Co’ ;

METADATA

COORDINATOR NODE

WORKER NODES

W1

W2

W3 … Wn

SELECT …

FROM

ads_1001,

campaigns_2001

…

It’s logical to place shards containing related rows of related tables together on the same nodes

Join queries between related rows can reduce the amount of data sent over the network

Effectively manage
data scale out

Shard rebalancer redistributes shards across

old and new worker nodes for balanced data

scale out without any downtime.

Shard rebalancer will recommend rebalance

when shards can be placed more evenly

For more control, use tenant isolation to easily

allocate dedicated to specific tenants with

greater needs

APPLICATION

BEGIN;

UPDATE

SET

WHERE

UPDATE

SET

WHERE

COMMIT;

campaigns

feedback = ‘relevance’

company_type = ‘platinum’ ;

ads

feedback = ‘relevance’

company_type = ‘platinum’ ;

METADATA

COORDINATOR NODE

W1

W2

W3 … Wn

BEGIN …

assign_Scaled-out_

transaction_id …

UPDATE campaigns_2009

…

COMMIT PREPARED …

BEGIN …

assign_Scaled-out_

transaction_id …

UPDATE campaigns_2001

…

COMMIT PREPARED …

BEGIN …

assign_Scaled-out_

transaction_id …

UPDATE campaigns_2017

…

COMMIT PREPARED …

Scaled-out transaction

Hyperscale (Citus) leverages built-in 2PC protocol to prepare transactions via a

coordinator node

Once worker nodes commit to transactions, release their locks, and send

acknowledgements, the coordinator node completes the scaled-out transaction

WORKER NODES

Table Classification

3 Table Types

• Distributed Tables

• Reference Tables

• Local Tables

Distributed Tables

Definition:

• Tables that are sharded.

Classification:

• Large tables (>10GB) – shard on same key (may require addition of shard key)

• All tables are be co-located

• Enables localized and fast joins on workers

• Ex: transactions, events etc

SELECT create_distributed_table(table_name, column_name);

Definition:

• Replicated to all the nodes (extra latency)

Classification:

• Small tables < 10GB

• Efficient joins with distributed tables

• Cannot have sharding dimension

• Ex: countries, categories

SELECT create_reference_table(table_name);

Reference Tables

• Plain Postgres tables on the coordinator node.

• Admin Tables that don’t interact with main tables

• Separate micro-service that doesn’t need sharding

Local Tables

M IC R O S O FT C O N FID E N T IAL – IN T E R N AL O N L Y

Hyperscale (Citus): Customer view

Application

PostgreSQL

client

Coordinator

w/ public IP

Worker node 0,

no public IP

Worker node 1,

no public IP

Server group

M IC R O S O FT C O N FID E N T IAL – IN T E R N AL O N L Y

Hyperscale (Citus): High availability

Application

PostgreSQL

client

Coordinator

w/ public IP

Worker node 0,

no public IP

Worker node 1,

no public IP

AZ[0]

Coordinator’s

standby

Worker node 0’s

standby

Worker node 1’s

standby

AZ[1]

Postgres sync replication

Postgres sync replication

Postgres sync replication

M IC R O S O FT C O N FID E N T IAL – IN T E R N AL O N L Y

Features: High availability (HA)

 Standby nodes for each primary node in Hyperscale (Citus)
 Standby nodes are created in another AZ selected by service

 Synchronous Postgres replication

 Transparent for apps: Same connection string after failover

 Detection, failover, new standby creation
 Detection: Up to 150 seconds (five 30 sec probes)

 Failover: Up to 90 seconds

 Total downtime: Up to 240 seconds

 New standby creation: Up to 1 hour

M IC R O S O FT C O N FID E N T IAL – IN T E R N AL O N L Y

Features: Connectivity and security

 Connection security (data-in-motion)
 Connection to coordinator only

 Firewall rules set for server group/coordinator
 Specific IP/IP range

 Allow all Azure services and resources

 The whole world (0.0.0.0-255.255.255.255)

 You can set it at Create time or after creation in Networking blade

 Always TLS 1.2

 Storage security (data-at-rest)
 Data, logs and backups encrypted with AES-256 cypher on storage level

M IC R O S O FT C O N FID E N T IAL – IN T E R N AL O N L Y

Backup and restore

 Fully automated backup
 Enabled on each node

 Stored for 35 days

 Deleted server
 Backup is taken as a part of dropping the server and only this last backup is preserved

 Restore
 Can restore to a date stamp with 5-minute increment

 Need to open a support ticket to request PITR

Want to learn more?

http://tiny.cc/80lljz - Hyperscale

http://tiny.cc/n2lljz - ora2pg

Warsaw

Prague

Stuttgart

Geneva

Munich

Cologne

Paris

London

Amsterdam

Madrid

Oslo

Milan

Rome

Istanbul

http://tiny.cc/80lljz
http://tiny.cc/n2lljz

Thank you!

