
PostgreSQL and 
Compressed Documents

Aleksander Alekseev
a.alekseev@postgrespro.ru

mailto:a.alekseev@postgrespro.ru


A few words about me
● I live in Moscow, Russia;
● Develop software since 2007;
● Contribute to PostgreSQL since 2015;
● Work in Postgres Professional company;
● Interests: OSS, functional programming, 

electronics, SDR, distributed systems, blogging, 
podcasting;

● https://eax.me/ & http://devzen.ru/ ;

https://eax.me/
http://devzen.ru/


In this talk
● On data compression in general;
● Compressing JSONB;
● Indexing Protobuf;
● Ideas for new projects;
● Fun facts;



Fun fact!
I was informed that I’m giving this talk only yesterday.

Sorry for raw slides :)



ZSON



ZSON
● An extension for transparent JSONB compression;
● A dictionary of common strings is created based on your data (re-learning is 

also supported);
● This dictionary is used to replace strings to 16-bit codes;
● Data is compressed in memory and on the disk;
● In some cases it gives 10% more TPS;
● Free and open source software (MIT license);
●



How JSONB looks like



JSONB problems
● Redundancy;
● Disk space;
● Memory;
● => IO & TPS;



The idea
● Step 1: replace common strings to 16-bit codes;
● Step 2: compress using PGLZ as usual;



zson_learn
zson_learn(

tables_and_columns text[][],

max_examples int default 10000,

min_length int default 2,

max_length int default 128,

min_count int default 2)

Example:

select zson_learn('{{"table1", "col1"}, {"table2", "col2"}}');



zson_extract_strings



Other ZSON internals



Encoding



pg_protobuf



What it has to do with Star Wars?



Protocol Buffers

Protocol Buffers is a method of serializing structured data. It is useful in 
developing programs to communicate with each other over a wire or for 
storing data. The method involves an interface description language that 
describes the structure of some data and a program that generates 
source code from that description for generating or parsing a stream of 
bytes that represents the structured data.

-- Wikipedia



Person.proto



Protobuf



These two images were borrowed from
● http://shop.oreilly.com/product/0636920032175.do
● https://martin.kleppmann.com/ 

http://shop.oreilly.com/product/0636920032175.do
https://martin.kleppmann.com/


Fun fact!
● The attribute `required` was removed in Protobuf 3;
● All fields are optional now;



pg_protobuf
● Protobuf support for PostgreSQL;
● Like ZSON but even better;
● No shared dictionaries;
● No learning/re-learning steps;
● Requires changes in the application;
● Free and open source software (MIT license);
●



pg_protobuf: example
create extension pg_protobuf;

create table heroes (x bytea);

create function hero_name(x bytea) returns text as $$
begin
return protobuf_get_string(x, 1);
end
$$ language 'plpgsql' immutable;

create index hero_name_idx on heroes using btree(hero_name(x));

select protobuf_decode(x) from heroes where hero_name(x) = 'foo';



Fun facts!



Data layout



Order matters



NULLs are free*
● Tuple header size: 23 bytes;
● With alignment: 24 bytes;
● Null mask is placed right after the header;
● Result: up to 8 nullable columns cost nothing;
● Also: buy one NULL, get 7 NULLs for free!



Alignment and B-tree
Index entries are 8-bytes aligned.



Timetz vs timestamptz
● timetz: int64 (timestamp) + int32 (timezone);
● timestamptz: always an int64, UTC time;
● Result: time takes more space then date + time;



TOAST
● PGLZ: more or less same speed and ratio as ZLIB;
● Heuristic: if beginning of the attribute is compressed well, compress it;
● Works out-of-the-box for large string-like attributes;



Ideas



Ideas: ZSON
● Use PGLZ directly, don’t rely on PostgreSQL heuristics;
● Use more than one dictionary for different tables / columns;
● Same idea for TEXT / XML / whatever;



Ideas: pg_protobuf
● Add an ability to modify Protobuf data;
● Write a tool that will generate PL/pgSQL procedures for accessing Protobuf 

fields;
● Support unsigned types: uint, fixed32, fixed64;
● Support fields with [packet=true] attribute (in Protobuf 3 - by default);

Fun fact! There are no unsigned integer types in PostgreSQL.



Ideas: more extensions!
● pg_thrift, pg_avro, pg_capnproto, pg_messagepack, …;
● An extension with pluggable compression algorithms;



Links
● https://github.com/afiskon/zson
● https://github.com/afiskon/pg_protobuf
● https://github.com/google/protobuf 
● https://eax.me/postgresql-extensions/ (in Russian)
● https://eax.me/cpp-protobuf/ (in Russian)
● https://afiskon.github.io/pgconf2017-talk.html 

https://github.com/afiskon/zson
https://github.com/afiskon/pg_protobuf
https://github.com/google/protobuf
https://eax.me/postgresql-extensions/
https://eax.me/cpp-protobuf/
https://afiskon.github.io/pgconf2017-talk.html


We are hiring!
● https://postgrespro.ru/jobs 

https://postgrespro.ru/jobs


 

Thank you for your attention!

● a.alekseev@postgrespro.ru 
● https://afiskon.github.io/ 
● https://postgrespro.com/
● https://github.com/postgrespro/ 

mailto:a.alekseev@postgrespro.ru
https://afiskon.github.io/
https://postgrespro.com/
https://github.com/postgrespro/

