
Towards more efficient
query plans

PostgreSQL 11 and beyond

Alexander Kuzmenkov
a.kuzmenkov@postgrespro.ru

What is a plan?
● SQL is a declarative language:

“what”, not “how”
● Optimizer decides how to execute

queries based on statistics about
data and available resources

● A plan is a tree of simple building
blocks
○ Scan

■ Table
■ Index
■ Function
■ Subquery

○ Join
■ Merge
■ Nested Loop
■ Hash

○ Sort/Group/Unique
○ etc.

Index scan

Covering B-tree indexes
● Index-only scan can return INCLUDEd

columns, but these columns:
○ do not participate in UNIQUE constraint
○ do not require btree operators

(e.g. point type)
● The development is ongoing for GiST

create unique index on pglist(id) include (subject);
select subject from t where id < 200000;
 -- emulate a join on id that selects 1/5 of the rows

Index Plan Time, ms

unique on pglist(id) Index Scan 150

unique on pglist(id) include (subject) Index Only Scan 50

11

 Table "public.pglist"
 Column │ Type
────────────┼───────────
 id │ integer
 sent │ timestamp
 subject │ text
 author │ text
 body_plain │ text
 fts │ tsvector

Index-only Bitmap Scan for count(*)

● for indexes that do not support index-only scan (e.g. GIN)
● don't fetch the tuples when we only need to count them
● fast and precise pagination without the EXPLAIN trick
● needs adequate work_mem to fit the bitmap
● works only on vacuumed pages

Conditions Pages read Time, ms

not vacuumed 95k 160

vacuumed 50 90

11

Bitmap

Tuple ID ☑

Page 1
Tuple 1

1

Page 1
Tuple 2

0

....

Page N
Tuple M

1

....

 # create index on pglist using gin(fts);
 # select count(*) from pglist
 where fts @@ to_tsquery('rebase');

● Fast DISTINCT using a btree index
● Now done with Unique over sorted input

-- table t(a int), 100k ints [0, 500)
create index on t(a);
select distinct a from t;

Plan Time, ms

Loose index scan 6

Unique over Index scan 97

Unique over Sort 160

DEVLoose index scan

select sent from pglist
order by sent <-> '2010-03-05'::timestamp limit 1000;

k-nearest neighbors for B-tree indexes
● Use case: find some events closest to the given time
● Sort by distance operator inside the index
● Can use btree_gist, but it’s generally slower

-> Index Only Scan using sent_btree on public.pglist
 Output: sent, (sent <-> '2010-03-05')
 Order By: (pglist.sent <-> '2010-03-05')

Index Type vanilla btree btree_gist kNN-btree

Time, ms 550 2.6 1.8

DEV

Incremental sort
Who needs sorted output?
● ORDER BY
● DISTINCT
● GROUP BY
● window functions
● merge joins

● Sort partially sorted input
● Reuse one index for similar ORDER BY

queries or joins
● Read less rows when LIMIT is specified
● Use less memory for sorting

DEV

create index on pglist(subject);
select distinct on (subject) subject, sent from pglist

order by subject, sent desc;
-- get the newest message date for each topic

Plan Sort details Time, s

Incremental Sort
over Index Scan

quicksort, 2 MB
memory

5.7

Sort over Seq
Scan

external merge,
1.2 GB disk

22.5

with LIMIT 100 Time, ms

Incremental Sort
over Index Scan

5

top-N heapsort
over Seq Scan

1000

Estimate sort costs for GROUP BY

● Make sort cost accord for cardinality and order of
columns

● Choose cheapest sort order for GROUP BY
● Example

○ “p” — high cardinality, cheap to compare
○ “v” — low cardinality, expensive to compare

Sort keys Sort time,
ms

p, v 800

v, p 1500

DEV

 p │ v
───┼──
 1 │ ' 0'
 1 │ ' 1'
 2 │ ' 0'
 2 │ ' 1'
 3 │ ' 0'
 3 │ ' 1'

select i/2 as p, format('''%60s''', i%2) as v into t
from generate_series(1, 1000000) i;

select count(*) from t group by p, v;

Joins
Join types
● Inner
● Outer
● Semi/Anti

Optimizations
● Transitive equality
● Join strength reduction
● Join removal

How to choose the order of joins?
● System R

○ Finds the best join for 2 tables
○ Combines the best joins it found for N-1

tables to find the best ones for N
○ Too many combinations to try. Only used

when N < geqo_threshold

● Genetic algorithm
○ Used when N >= geqo_threshold
○ A heuristic algorithm that doesn't try all the

permutation

Multicolumn join selectivity

● Poor selectivity estimates for multicolumn join on correlated columns
● CREATE STATISTICS (dependencies) not helpful for joins
● Solution: create single–column statistics on composite values
● Do it automatically — there is probably and index on these columns

 -- table t(a int, b int), a = b, a in [0..10k), 1M rows
 # select * from t join t tt using (a, b);

Real number of join
rows

Normal stats Multicolumn index
stats

10M 100 (4 orders off!) 9.97M

DEV

Joins with a unique inner side

Semi join
● WHERE EXISTS
● Like Inner, but:

○ No inner columns
○ Skips duplicates

● Reduced to inner join when the
inner side is unique [10]

Skip materialization in merge joins
● Each inner tuple only used once =>

don't have to materialize the inner
side [10]

● On the inner side, at most one row matches the join clauses
● Proved by unique index for table or GROUP BY for subquery

Self join on primary key

● Frequent in ORM-generated queries
● Also happens when reusing complex views
● Can be replaced with a scan with combined filters

Baseline Join on id between v1 and v2

With self-join
removal

Scan on pglist where subject like 'P%'
and sent between ...

DEV

create view v1 as select * from pglist
where subject like 'P%';

create view v2 as select * from pglist
where sent between '2010-01-01' and '2010-12-31';

select * from v1 where exists
(select * from v2 where id = v1.id);

Outer join
● Output all outer rows, nulls for

inner rows when none match

● Less freedom for planning

● Can be reduced to inner join
○ when it follows from WHERE clause that

some inner column is not null [before 10]
● Can be removed

○ Inner side is not used and is unique
[before 10]

○ Inner side is not used and the result is
made unique by GROUP BY or DISTINCT
[DEV]

create table parentmsg (id int primary key, parent int);

select * from pglist left join parentmsg using (id)

where parent = 42;

select pglist.* from node left join parentmsg using (id);

select distinct on (pglist.id) from pglist

left join parentmsg on pglist.id = parent;

● Normally performed with Nested Loop
● Order ranges by comparison operator
● Perform Merge Join on range overlap (&&)

 -- tables s, r(ir int4range) with
 r.ir = (g, g+10),
 s.ir = (g+5, g+15),
 g = 1..100k;

 -- gist(ir) on s and r;

 # select * from s join r on s.ir && r.ir;

Plan Time, s

Nested Loop over Seq
Scan and Index Only
Scan

15.7

Merge Join over Sort 4.3

Merge Join over btree
Index Scan

2.8

Merge join on range overlap DEV

Inlining Common Table Expressions

● Can lead to better plans
○ Statistics
○ Predicate pushdown

DEV

WITH t AS [MATERIALIZE {ON|OFF}] (…)

Option Inline?

no option If only one reference

ON Never

OFF If no side effects or
RECURSIVE

create index on pglist
(subject text_pattern_ops);

with c as (
 select subject, count(*) n
 from pglist group by subject
)
select * from c
where subject like 'P%'
order by n limit 10;

Materialize ON OFF

Est. rows
(actually 15k)

400 17k

Time, ms 800 30

Plan for ‘c’ Seq scan Index
scan

Precalculate stable and immutable functions
1. Cache stable functions in expressions at execution time

select count(*) from messages
where fts @@ to_tsquery('postgres');

● Calculate to_tsquery only once in Recheck step of Bitmap Heap Scan
● 1.5 s precalculated / 2.3 s baseline

2. Inline immutable functions in FROM list at planning time

select count(*) from messages m,
to_tsquery('english', 'postgres') qq where m.fts @@ qq;

● Bitmap Heap scan instead of Nested Loop over Function Scan + Bitmap
Heap scan

● No join => faster planning, better cost estimates

DEV

Support the development
● Review the patches you need

● No need to know Postgres internals or

C programming

● Read “Reviewing a Patch” at the wiki

● Usability review

○ Is the feature actually implemented?

○ Do we want it?

○ Are there dangers?

● Feature test

○ Does it work as advertised?

○ Are there any corner cases?

● Performance review

○ Are there any slowdowns?

○ If the patch claims to improve

the performance, does it?

Thank you!

Alexander Kuzmenkov
a.kuzmenkov@postgrespro.ru

References
Loose index scan
https://commitfest.postgresql.org/21/1741/

k-nearest neighbors for B-tree indexes
https://commitfest.postgresql.org/21/1804/

Incremental sort
https://commitfest.postgresql.org/20/1124/

Estimate sort costs for GROUP BY
https://commitfest.postgresql.org/20/1706

Multicolumn join selectivity
https://www.postgresql.org/message-id/flat/3fcf
d5e5-6849-34e6-22ab-1b62d191bedb%402nd
quadrant.com#d61504c511d4b437505a05fa5
0047019

Self join on primary key
https://commitfest.postgresql.org/20/1712/

Unique outer join with GROUP BY
https://www.postgresql.org/message-id/flat/CAK
JS1f96XNrS68NZy9s=Xkq+RAj6RE5CrCvDcy_
uB-V=U4+YRw@mail.gmail.com

Merge join on range overlap
https://commitfest.postgresql.org/17/1449/

Inlining Common Table Expressions
https://commitfest.postgresql.org/21/1734/

Precalculate stable and immutable functions
1. https://commitfest.postgresql.org/20/1648/
2. https://commitfest.postgresql.org/19/1664/

https://commitfest.postgresql.org/21/1741/
https://commitfest.postgresql.org/21/1804/
https://commitfest.postgresql.org/20/1124/
https://commitfest.postgresql.org/20/1706
https://www.postgresql.org/message-id/flat/3fcfd5e5-6849-34e6-22ab-1b62d191bedb%402ndquadrant.com#d61504c511d4b437505a05fa50047019
https://www.postgresql.org/message-id/flat/3fcfd5e5-6849-34e6-22ab-1b62d191bedb%402ndquadrant.com#d61504c511d4b437505a05fa50047019
https://www.postgresql.org/message-id/flat/3fcfd5e5-6849-34e6-22ab-1b62d191bedb%402ndquadrant.com#d61504c511d4b437505a05fa50047019
https://www.postgresql.org/message-id/flat/3fcfd5e5-6849-34e6-22ab-1b62d191bedb%402ndquadrant.com#d61504c511d4b437505a05fa50047019
https://commitfest.postgresql.org/20/1712/
https://www.postgresql.org/message-id/flat/CAKJS1f96XNrS68NZy9s=Xkq+RAj6RE5CrCvDcy_uB-V=U4+YRw@mail.gmail.com
https://www.postgresql.org/message-id/flat/CAKJS1f96XNrS68NZy9s=Xkq+RAj6RE5CrCvDcy_uB-V=U4+YRw@mail.gmail.com
https://www.postgresql.org/message-id/flat/CAKJS1f96XNrS68NZy9s=Xkq+RAj6RE5CrCvDcy_uB-V=U4+YRw@mail.gmail.com
https://commitfest.postgresql.org/17/1449/
https://commitfest.postgresql.org/21/1734/
https://commitfest.postgresql.org/20/1648/
https://commitfest.postgresql.org/19/1664/

