Towards more efficient

guery plans
PostgreSQL 11 and beyond

o PROFESSIONAL

Alexander Kuzmenkov
a.kuzmenkov@postgrespro.ru PO S g re S

What is a plan?

e SQL is a declarative language:
“what”, not “how”

e Optimizer decides how to execute
queries based on statistics about
data and available resources

e Anplanis a tree of simple building
blocks

o Scan
m T[able
m Index
m Function
m Subquery
o Join
m Merge
m Nested Loop
m Hash

o Sort/Group/Unique
o etc.

Index scan

Filter

Index

Bitmap Heap

Tuple Id
Bitmap

Scan

Tuple Id

Index Scan

Covering B-tree indexes E

e Index-only scan can return INCLUDEd Table "public.pglist"
columns, but these columns: Column Type
o do not participate in UNIQUE constraint | |
o do not require btree operators 1d integer
(e.g. point type) sen? Limestamp
_ _ _ subject text
e The development is ongoing for GiST Juthor text
body plain text
fts tsvector

create unique index on pglist(id) include (subject);
select subject from t where id < 200000;
-— emulate a join on id that selects 1/5 of the rows

Index Plan Time, ms

unique on pglist(id) Index Scan 150

unique on pglist(id) include (subject) | Index Only Scan | 50

Index-only Bitmap Scan for count(*)

for indexes that do not support index-only scan (e.g. GIN)
don't fetch the tuples when we only need to count them
fast and precise pagination without the EXPLAIN trick
needs adequate work_mem to fit the bitmap

works only on vacuumed pages

create index on pglist using gin (fts);
select count(*) from pglist

where fts @@ to tsquery('rebase');

Conditions Pages read Time, ms
not vacuumed 95k 160

vacuumed 50 90

Bitmap
Tuple ID Y
Page 1 1
Tuple 1
Page 1 0
Tuple 2
Page N 1
Tuple M

Loose index scan

e Fast DISTINCT using a btree index
e Now done with Unique over sorted input

-— table t(a int), 100k ints [0, 500)

create index on t(a);

select distinct a from t;
Plan Time, ms
Loose index scan 6

Unique over Index scan 97

Unique over Sort 160

k-nearest neighbors for B-tree indexes

#

->

Use case: find some events closest to the given time
Sort by distance operator inside the index
Can use btree_gist, but it's generally slower

select sent from pglist
order by sent <-> '2010-03-05"'::timestamp limit 1000;

Index Only Scan using sent btree on public.pglist
Output: sent, (sent <-> '2010-03-05")
Order By: (pglist.sent <-> '2010-03-05")

Index Type vanilla btree btree gist KNN-btree
Time, ms 550 2.6 1.8

Incremental sort

e Sort partially sorted input

e Reuse one index for similar ORDER BY
qgueries or joins

Read less rows when LIMIT is specified
Use less memory for sorting

HH=

order by subject, sent desc;

Who needs sorted output?

ORDER BY
DISTINCT
GROUP BY
window functions
merge joins

create index on pglist(subject);

select distinct on (subject) subject,

sent from pglist

-—- get the newest message date for each topic

Plan Sort details Time, s

Incremental Sort | quicksort, 2 MB | 5.7
over Index Scan | memory

Sort over Seq external merge, 22.5
Scan 1.2 GB disk

with LIMIT 100 Time, ms

Incremental Sort 5
over Index Scan

top-N heapsort | 1000
over Seq Scan

Estimate sort costs for GROUP BY

e Make sort cost accord for cardinality and order of

columns

e Choose cheapest sort order for GROUP BY

e Example

(13 ”»

o “p” — high cardinality, cheap to compare

o “v’— low cardinality, expensive to compare

select i/2 as p,

format ('''%$60s'"'', 1%

from generate series(l, 1000000) z;

select count (*)

S

from t group by p, Vv;

Sort keys | Sort time,
ms
P, V 800
vV, p 1500
2) as v into t

w w NN

OV
1'
O'
l'
Ol
1'

[oev

Joins

Join types
e Inner
e Outer
e Semi/Anti

Optimizations
e Transitive equality
e Join strength reduction
e Join removal

How to choose the order of joins?

e SystemR
o Finds the best join for 2 tables
o Combines the best joins it found for N-1
tables to find the best ones for N
o Too many combinations to try. Only used
when N < geqo_threshold

e Genetic algorithm
o Used when N >= geqo_threshold
o A heuristic algorithm that doesn't try all the
permutation

Multicolumn join selectivity

Poor selectivity estimates for multicolumn join on correlated columns
CREATE STATISTICS (dependencies) not helpful for joins

Solution: create single—column statistics on composite values

Do it automatically — there is probably and index on these columns

-— table t(a int, b int), a = b, a in [0..10k), 1M rows
select * from t join t tt using (a, b);

Real number of join | Normal stats Multicolumn index
rows stats

10M 100 (4 orders offl) | 9.97M

Joins with a unique inner side

e On the inner side, at most one row matches the join clauses
e Proved by unique index for table or GROUP BY for subquery

Semi join Skip materialization in merge joins
e WHERE EXISTS e Each inner tuple only used once =>
e Like Inner, but: don't have to materialize the inner
o No inner columns side [10]

o Skips duplicates
e Reduced to inner join when the
inner side is unique [10]

Self join on primary key

e Frequent in ORM-generated queries
e Also happens when reusing complex views
e Can be replaced with a scan with combined filters

create view vl as select * from pglist

where subject like 'P%';
create view v2 as select * from pglist

where sent between '2010-01-01' and '2010-12-31";
select * from vl where exists

(select * from v2 where id = vl.id);

Baseline Join on id between v1 and v2

With self-join | Scan on pglist where subject like 'P%'
removal and sent between

Outer join

e Output all outer rows, nulls for e Can be reduced to inner join
o when it follows from WHERE clause that
some inner column is not null [before 10]
e Can be removed
o Inner side is not used and is unique
[before 10]
o Inner side is not used and the result is
made unique by GROUP BY or DISTINCT
[DEV]

inner rows when none match

e Less freedom for planning

create table parentmsg (id int primary key, parent int);

select * from pglist left join parentmsg using (id)

where parent = 42;

select pglist.* from node left join parentmsg using (id);
select distinct on (pglist.id) from pglist

left joiln parentmsg on pglist.id = parent;

Merge join on range overlap

e Normally performed with Nested Loop
e Order ranges by comparison operator Plan
e Perform Merge Join on range overlap (&&)

Nested Loop over Seq
-— tables s, r(ir int4range) with Scan and Index Only
r.ir = (g, g+10), Scan
s.ir = (g+5, g+15),

g =1..100k,

Merge Join over Sort

Merge Join over btree
-—- gist(ir) on s and r; Index Scan

select * from s join r on s.ir && r.ir;

Time, s

15.7

4.3

2.8

Inlining Common Table Expressions [DEV.

e Can lead to better plans WITH t AS [MATERIALIZE {ON|OFF}] (..)
o Statistics Option Inline?
o Predicate pushdown
no option If only one reference
ON Never
OFF If no side effects or
RECURSIVE
create index on pglist
(subject text pattern ops); Materialize ON OFF
& with c as (Est. rows 400 17K
select subject, count(*) n (actually 15k)
from pglist group by subject Time. ms 800 30
))
select * from c Plan for ‘c’ Seq scan | Index
where subject like 'P%' scan

order by n limit 10;

Precalculate stable and immutable functions

1. Cache stable functions in expressions at execution time

select count(*) from messages
where fts (@@ to tsquery('postgres');

e Calculate to tsquery only once in Recheck step of Bitmap Heap Scan
e 1.5 s precalculated / 2.3 s baseline

2. Inline immutable functions in FROM list at planning time

select count(*) from messages m,
to tsquery('english', 'postgres') gg where m.fts @@ gqg;

e Bitmap Heap scan instead of Nested Loop over Function Scan + Bitmap

Heap scan
e No join => faster planning, better cost estimates

[oev

Support the development

e Review the patches you need

e No need to know Postgres internals or

C programming

e Read “Reviewing a Patch” at the wiki

e Usability review

©)

©)

©)

Is the feature actually implemented?
Do we want it?

Are there dangers?

e Feature test
o Does it work as advertised?
o Are there any corner cases?
e Performance review
o Are there any slowdowns?
o If the patch claims to improve

the performance, does it?

Thank you!

Alexander Kuzmenkov o PROFESSIONAL

a.kuzmenkov@postgrespro.ru POS g reS

References

Loose index scan
https://commitfest.postaresql.org/21/1741/

k-nearest neighbors for B-tree indexes
hitps://commitfest.postgresqgl.org/21/1804/

Incremental sort
https://commitfest.postgresqgl.ora/20/1124/

Estimate sort costs for GROUP BY
https://commitfest.postgresql.org/20/1706

Multicolumn join selectivity
https://www.postgresql.org/message-id/flat/3fcf

Self join on primary key
https://commitfest.postgresql.org/20/1712/

Unique outer join with GROUP BY
https://www.postgresql.org/message-id/flat/ CAK
JS1fI6XNIrS68NZy9s=Xkq+RAJ6RE5CrCvDcy
uB-V=U4+YRw@mail.gmail.com

Merge join on range overlap
https://commitfest.postgresql.org/17/1449/

Inlining Common Table Expressions
https://commitfest.postgresql.org/21/1734/

d5e5-6849-34e6-22ab-1b62d191bedb%402nd
quadrant.com#d61504c511d4b437505a05fab5
0047019

Precalculate stable and immutable functions
1. https://commitfest.postgresal.ora/20/1648/
2. https://commitfest.postagresql.org/19/1664/

https://commitfest.postgresql.org/21/1741/
https://commitfest.postgresql.org/21/1804/
https://commitfest.postgresql.org/20/1124/
https://commitfest.postgresql.org/20/1706
https://www.postgresql.org/message-id/flat/3fcfd5e5-6849-34e6-22ab-1b62d191bedb%402ndquadrant.com#d61504c511d4b437505a05fa50047019
https://www.postgresql.org/message-id/flat/3fcfd5e5-6849-34e6-22ab-1b62d191bedb%402ndquadrant.com#d61504c511d4b437505a05fa50047019
https://www.postgresql.org/message-id/flat/3fcfd5e5-6849-34e6-22ab-1b62d191bedb%402ndquadrant.com#d61504c511d4b437505a05fa50047019
https://www.postgresql.org/message-id/flat/3fcfd5e5-6849-34e6-22ab-1b62d191bedb%402ndquadrant.com#d61504c511d4b437505a05fa50047019
https://commitfest.postgresql.org/20/1712/
https://www.postgresql.org/message-id/flat/CAKJS1f96XNrS68NZy9s=Xkq+RAj6RE5CrCvDcy_uB-V=U4+YRw@mail.gmail.com
https://www.postgresql.org/message-id/flat/CAKJS1f96XNrS68NZy9s=Xkq+RAj6RE5CrCvDcy_uB-V=U4+YRw@mail.gmail.com
https://www.postgresql.org/message-id/flat/CAKJS1f96XNrS68NZy9s=Xkq+RAj6RE5CrCvDcy_uB-V=U4+YRw@mail.gmail.com
https://commitfest.postgresql.org/17/1449/
https://commitfest.postgresql.org/21/1734/
https://commitfest.postgresql.org/20/1648/
https://commitfest.postgresql.org/19/1664/

