
Feb 2015

NewSQL Overview
Ivan Glushkov
@gliush
ivan.glushkov@gmail.com

mailto:ivan.glushkov@gmail.com

❖ MIPT

❖ MCST, Elbrus compiler project

❖ Echo, real-time social platform (PaaS)

❖ DevZen podcast (http://devzen.ru)

About myself

http://devzen.ru

❖ Relational Model in 1970

❖ disk-oriented

❖ rows

❖ sql

❖ “One size fits all” doesn’t work:

❖ Column-oriented data warehouses for OLAP.

❖ Key-Value storages, Document storages

C
om

pl
ex

ity
WorkLoad focus

Data WareHouses

Social Networks

OLTP

Writes Reads

Si
m

pl
e

C
om

pl
ex

History of SQL

Startups lifecycle

Users Errors

❖ Start: no money, no users, open source

Startups lifecycle

Users Errors

❖ Start: no money, no users, open source

❖ Middle: more users, storage optimization

Startups lifecycle
❖ Start: no money, no users, open source

❖ Middle: more users, storage optimization

❖ Final: plenty of users, storage failure

Users Errors

New requirements
❖ Large scale systems, with huge and growing data sets

❖ 9M messages per hour in Facebook

❖ 50M messages per day in Twitter

❖ Information is frequently generated by devices

❖ High concurrency requirements

❖ Usually, data model with some relations

❖ Often, transactional integrity

Trends: architecture change

Client Side

Server Side

Cloud Storage

Client Side

Server Side

Database

Consistency, transactions: Database

Storage optimization: Database

Scalability: Client Side

Consistency, transactions: Cloud

Storage optimization: Cloud

Scalability: All levels

Trends: architecture change

❖ CAP: consistency, availability, partitioning

❖ ACID: atomicity, consistency, isolation, durability

❖ BASE: basically available, soft state, eventual
consistency

Trends: architecture change
❖ ‘P’ in CAP is not discrete

❖ Managing partitions: detection, limitations in
operations, recovery

NoSQL

❖ CAP: first ‘A’, then ‘C’: finer control over availability

❖ Horizontal scaling

❖ Not a “relational model”, custom API

❖ Schemaless

❖ Types: Key-Value, Document, Graph, …

Application-level sharding

❖ Additional application-level logic

❖ Difficulties with cross-sharding transactions

❖ More servers to maintain

❖ More components — higher prob for breakdown

NewSQL: definition

“A DBMS that delivers the scalability
and flexibility promised by NoSQL
while retaining the support for SQL
queries and/or ACID, or to improve
performance for appropriate workloads.”

451 Group

NewSQL: definition

❖ SQL as the primary interface
❖ ACID support for transactions
❖ Non-locking concurrency control
❖ High per-node performance
❖ Scalable, shared nothing architecture

Michael Stonebraker

Shared nothing architecture

❖ No single point of failure

❖ Each node is independent and self-sufficient

❖ No shared memory or disk

❖ Scale infinitely

❖ Data partitioning

❖ Slow multi-shards requests

Column-oriented DBMS
❖ Store content by column rather than by row

❖ Efficient in hard disk access

❖ Good for sparse and repeated data

❖ Higher data compression

❖ More reads/writes for large records with a lot of fields

❖ Better for relatively infrequent writes, lots of data throughput on reads
(OLAP, analytic requests).

John Smith 20
Joe Smith 30

Alice Adams 50

John:001; Joe:002; Alice:003.

Smith:001,002; Adams:003.

20:001; 30:002; 50:003.

Traditional DBMS overheads

12%

10%

11%

18% 20%

29%Buffer Management
Logging
Locking
Index management
Latching
Useful work

“Removing those overheads and running the database in
main memory would yield orders of magnitude improvements

in database performance”

by Stonebraker & research group

In-memory storage

❖ High throughput

❖ Low latency

❖ No Buffer Management

❖ If serialized, no Locking or Latching

In-memory storage: price

on-demand 3Y-reserved plan

per hour 11.2 $ 3.9 $

per month 8.1K $ 2.8K $

per year 97K $ 33,7K $

Amazon price reduction

Current price for 1TB (~4 instances of ‘r3.8xlarge’ type)

NewSQL: categories

❖ New approaches: VoltDB, Clustrix, NuoDB

❖ New storage engines: TokuDB, ScaleDB

❖ Transparent clustering: ScaleBase, dbShards

NuoDB

❖ Multi-tier architecture:

❖ Administrative: managing, stats, cli, web-ui

❖ Transactional: ACID except ‘D’, cache

❖ Storage: key-value store (‘D’ from ACID)

NuoDB
❖ Everything is an ‘Atom’

❖ Peer-to-peer communication, encrypted sessions

❖ MVCC + Append-only storage

NuoDB: CAP & ACID

❖ `CP` system. Need majority of nodes to work

❖ If split to two equal parts -> stop

❖ Several consistency modes including ‘consistent_read’

YCSB

❖ Yahoo Cloud Serving Benchmark

❖ Key-value: insert/read/update/scan

❖ Measures:

❖ Performance: latency/throughput

❖ Scaling: elastic speedup

NuoDB: YCSB
Throughput, tps/nodes

0

275 000

550 000

825 000

1 100 000

1 2 4 8 16 24

Update latency, μs

0

25

50

1 2 4 8 16 24

Read latency, μs

0

1.5

3

1 2 4 8 16 24

Hosts: 32GB, Xeon 8 cores, 1TB HDD, 1Gb LAN

5% updates, 95% reads

VoltDB

❖ In-memory storage

❖ Stored procedure interface, async/sync proc execution

❖ Serializing all data access

❖ Horizontal partitioning

❖ Multi-master replication (“K-safety”)

❖ Snapshots + Command Logging

VoltDB

❖ Open-source, community edition is under GPLv3.

❖ Java + C++

❖ Partitioning and Replication control

VoltDB: CAP & ACID

❖ Without K-safety, any node fail break the whole DB

❖ Snapshot and shutdown minor segments during
network paritions

❖ Single-partition transactions are very fast

❖ Multi-partition transactions are slower (manager), try to
avoid (1000s tps in ’13, no updates since)

VoltDB: key-value bench

90%reads, 10%writes
3 nodes: 64GB, dual 2.93GHz intel 6 core processors

VoltDB: “voter” bench

26 SQL statements per transaction

❖ Multi-master

❖ Shared data

❖ Cluster manager to solve  
conflicts (locks)

❖ ACID?

❖ Network Partition Handling?

❖ Scaling?

ScaleDB

MySQL MySQL MySQ…

Mirrored
Storage

…

Application

Cluster
Manager

Mirrored
Storage

Mirrored
Storage

ClustrixDB

❖ “Query fragment” - basic primitive of the system:

❖ read/write/ execute function

❖ modify control flow

❖ perform synchronisation

❖ send rows to query fragments on another nodes

❖ Data partitions: “slices” split and moved transparently

❖ Replication: master slice for reads + slave for redundancy

ClustrixDB

❖ “Move query to the data”

❖ Dynamic and transparent
data layout

❖ Linear scale

ClustrixDB: CAP & ACID

❖ `CP` system. Need majority of nodes to work

❖ Only ‘Repeatable Read’ isolation level  
(so, ‘fantom reads’ are possible)

❖ Distributed Lock Manager for writer-writer locks (on
each node)

TPC-C

❖ Online Transaction Processing  
(OLTP) benchmark

❖ 9 types of tables

❖ 5 concurrent transactions of different complexity

❖ Productivity measured in “new-order transaction”

ClustrixDB: TPC-C

❖ 5000W ~ 400GB of data

❖ Compared with Percona
Mysql, Intel Xeon, 8 cores

❖ ClustrixDB nodes: “Dual 4
core Westmere processors”

ClustrixDB: example

❖ 30M users, 10M logins per day

❖ 4.4B transactions per day

❖ 1.08/4.69 Petabytes per month writes/reads

❖ 42 nodes, 336 cores, 2TB memory, 46TB SSD

FoundationDB
❖ KV store, ordered keys

❖ Paxos for cluster coordination

❖ Global ACID transactions, range operations

❖ Lock-free, optimistic concurrency, MVCC

❖ Good testing (deterministic simulation)

❖ Fault-tolerance (replication)

❖ SQL Layer (similar to Google F1 on top of Spanner)

FoundationDB

❖ SSD/Memory storage engine

❖ Layers concept

❖ ‘CP’ system with Paxos-ed 
coordination centres

❖ Written in the Flow language (translated to C++11) 
with actor model support

❖ Watches, atomic operations (e.g. ‘add’)

FoundationDB: CAP and ACID

❖ Serializable isolation with optimistic concurrency

❖ > 100 wps to the same key? Use another DB!

❖ ‘CP system’ (Paxos)  
Need majority of coordination center to work

FoundationDB: KV Performance

Scaling:  
up to 24 EC2 c3.8xlarge, 16 cores

Throughput (per core)

FoundationDB:SQL Layer

❖ SQL - layer on top of KV -> 
transactional, scalable, HA

❖ SQL Layer is stateless ->  
scalable, fault tolerant

❖ Hierarchical schema

❖ SQL and JSON interfaces

❖ Powerful indexing (multi-table, geospatial, …)

FoundationDB: SQL Performance
Sysbench: read/write, ~80GB, 300M rows

One node test  
4 core, 16GB RAM, 200GB SATA SSD

Multi nodes test  
KV: 8 nodes with 1-process; 3-replication  

SQL: up to 32 nodes with  
8-thread sysbench process

MemSQL
❖ In-Memory Storage for OLTP

❖ Column-oriented Storage for OLAP

❖ Compiled Query Execution Plans (+cache)

❖ Local ACID transactions (no global txs for distributed)

❖ Lock-free, MVCC

❖ Fault tolerance, automatic replication,  
redundancy (=2 by default)

❖ [Almost] no penalty for replica creation

MemSQL
❖ Two-tiered shared-nothing architecture

• Aggregators for query routing

• Leaves for storage and processing

❖ Integration:

• SQL

• MySQL protocol

• JSON API

MemSQL: CAP & ACID

❖ `CP` system. Need majority of nodes (or half with
master) to work

❖ Only ‘Read Committed’ isolation level  
(‘fantom reads’, ‘non-repeatable reads’ are possible)

❖ Manual Master Aggregator management

MemSQL: Performance
❖ Adapted TPC-H

❖ OLAP Reads & OLTP writes simultaneously

❖ AWS EC2 VPC

Overview
Max  

Isolation Scalable Open
Source Free to try Language

PostgreSQL S Postgres-XL? Yes Yes C

NuoDB CR Yes No <5 domains C++

VoltDB S Yes Yes Yes  
(wo HA)

Java/C++

ScaleDB RC? Yes? No ? ?

ClustrixDB RR Yes No Trial  
(via email req)

C ?

FoundationDB S Yes Partly <6 processes Flow(C++)

MemSQL RC Yes No ? C++

S: Serializable, RR: Read Committed, RC: Read Committed, CR: Consistent Read

Conclusions

❖ NewSQL is an established trend with a number of
options

❖ Hard to pick one because they're not on a common scale

❖ No silver bullet

❖ Growing data volume requires ever more efficient ways
to store and process it

Questions?

Links: General concepts
❖ CAP explanation from Brewer, 12 years later

❖ Scalable performance, simple explanation

❖ What is NewSQL

❖ Overview about NoSQL databases

❖ Performance loss in OLTP systems

❖ Memory price trends

❖ (wiki) Shared Nothing Architecture

❖ (wiki) Column oriented DBMS

❖ How NewSQL handles big data

❖ What is YCSB benchmark

❖ What is TPC benchmark

❖ Transactional isolation levels

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://cacm.acm.org/magazines/2011/6/108651-10-rules-for-scalable-performance-in-simple-operation-datastores/fulltext
https://cs.brown.edu/courses/cs227/archives/2012/slides/newsql/newsql-intro.pdf
http://wikibon.org/wiki/v/21_NoSQL_Innovators_to_Look_for_in_2020
http://nms.csail.mit.edu/~stavros/pubs/OLTP_sigmod08.pdf
http://blog.gravitant.com/2014/01/31/does-price-reduction-drive-cloud-consumption/
https://en.wikipedia.org/wiki/Shared_nothing_architecture
https://en.wikipedia.org/wiki/Column-oriented_DBMS
http://www.opensourceforu.com/2012/01/newsql-handle-big-data/
http://labs.yahoo.com/files/ycsb.pdf
http://www.tpc.org/information/benchmarks.asp
http://www.postgresql.org/docs/9.1/static/transaction-iso.html

Links: NuoDB
❖ http://www.infoq.com/articles/nuodb-architecture-1/

❖ http://www.infoq.com/articles/nuodb-architecture-2/

❖ http://stackoverflow.com/questions/14552091/nuodb-and-hdfs-as-
storage

❖ http://go.nuodb.com/rs/nuodb/images/NuoDB_Benchmark_Report.pdf

❖ NuoDB white paper (google has you :)

❖ https://aphyr.com/posts/292-call-me-maybe-nuodb

❖ http://dev.nuodb.com/techblog/failure-detection-and-network-partition-
management-nuodb

http://www.infoq.com/articles/nuodb-architecture-1/
http://www.infoq.com/articles/nuodb-architecture-2/
http://stackoverflow.com/questions/14552091/nuodb-and-hdfs-as-storage
http://go.nuodb.com/rs/nuodb/images/NuoDB_Benchmark_Report.pdf
https://aphyr.com/posts/292-call-me-maybe-nuodb
http://dev.nuodb.com/techblog/failure-detection-and-network-partition-management-nuodb

Links: VoltDB
❖ White paper, Technical overview (google has you)

❖ https://github.com/VoltDB/voltdb-client-erlang/blob/master/
doc/BENCHMARK1.md

❖ http://www.mysqlperformanceblog.com/2011/02/28/is-voltdb-
really-as-scalable-as-they-claim/

❖ https://voltdb.com/blog/voltdb-3-x-performance-
characteristics/

❖ http://docs.voltdb.com/UsingVoltDB/KsafeNetPart.php

❖ https://news.ycombinator.com/item?id=6639127

https://github.com/VoltDB/voltdb-client-erlang/blob/master/doc/BENCHMARK1.md
http://www.mysqlperformanceblog.com/2011/02/28/is-voltdb-really-as-scalable-as-they-claim/
https://voltdb.com/blog/voltdb-3-x-performance-characteristics/
http://docs.voltdb.com/UsingVoltDB/KsafeNetPart.php
https://news.ycombinator.com/item?id=6639127

Links: ScaleDB

❖ http://scaledb.com/pdfs/TechnicalOverview.pdf

❖ http://www.scaledb.com/pdfs/
scaledb_multitenant.pdf

❖ http://www.percona.com/live/mysql-
conference-2013/sites/default/files/slides/
DB_Vistualization_for_PublicPrivate_Clouds.pdf

http://scaledb.com/pdfs/TechnicalOverview.pdf
http://www.scaledb.com/pdfs/scaledb_multitenant.pdf
http://www.percona.com/live/mysql-conference-2013/sites/default/files/slides/DB_Vistualization_for_PublicPrivate_Clouds.pdf

Links: Clustrix
❖ http://www.clustrix.com/wp-content/uploads/2013/10/Clustrix_A-New-

Approach_WhitePaper.pdf

❖ http://www.clustrix.com/wp-content/uploads/2013/10/Clustrix_Driving-the-
New-Wave_WP.pdf

❖ http://www.clustrix.com/wp-content/uploads/2013/10/Clustrix_AWS_WP.pdf

❖ http://www.clustrix.com/wp-content/uploads/2013/10/
Clustrix_TPCC_Percona.pdf

❖ http://sergei.clustrix.com/2011/01/mongodb-vs-clustrix-comparison-
part-1.html

❖ http://docs.clustrix.com/display/CLXDOC/Consistency%2C+Fault+Tolerance
%2C+and+Availability

http://www.clustrix.com/wp-content/uploads/2013/10/Clustrix_A-New-Approach_WhitePaper.pdf
http://www.clustrix.com/wp-content/uploads/2013/10/Clustrix_Driving-the-New-Wave_WP.pdf
http://www.clustrix.com/wp-content/uploads/2013/10/Clustrix_AWS_WP.pdf
http://www.clustrix.com/wp-content/uploads/2013/10/Clustrix_TPCC_Percona.pdf
http://sergei.clustrix.com/2011/01/mongodb-vs-clustrix-comparison-part-1.html
http://docs.clustrix.com/display/CLXDOC/Consistency%2C+Fault+Tolerance%2C+and+Availability

Links: FoundationDB
❖ https://foundationdb.com/key-value-store/white-papers

❖ http://blog.foundationdb.com/call-me-maybe-foundationdb-vs-jepsen

❖ https://foundationdb.com/acid-claims

❖ https://foundationdb.com/key-value-store/performance

❖ https://foundationdb.com/layers/sql/documentation/Concepts

❖ https://foundationdb.com/layers/sql/documentation/SQL/indexes.html

❖ https://foundationdb.com/layers/sql/performance

❖ https://foundationdb.com/key-value-store/features

❖ https://foundationdb.com/key-value-store/documentation/configuration.html

❖ https://foundationdb.com/key-value-store/documentation/beta1/developer-
guide.html

❖ https://foundationdb.com/layers/sql/documentation/Concepts/
known.limitations.html

https://foundationdb.com/key-value-store/white-papers
http://blog.foundationdb.com/call-me-maybe-foundationdb-vs-jepsen
https://foundationdb.com/acid-claims
https://foundationdb.com/key-value-store/performance
https://foundationdb.com/layers/sql/documentation/Concepts
https://foundationdb.com/layers/sql/documentation/SQL/indexes.html
https://foundationdb.com/layers/sql/performance
https://foundationdb.com/key-value-store/features
https://foundationdb.com/key-value-store/documentation/configuration.html
https://foundationdb.com/key-value-store/documentation/beta1/developer-guide.html
https://foundationdb.com/layers/sql/documentation/Concepts/known.limitations.html

Links: MemSQL
❖ MemSQL Whitepaper "The Modern Database

Landscape"

❖ MemSQL Whitepaper "ESG Lab Benchmark of
MemSQL's Performance”

❖ MemSQL Whitepaper “Technical overview”

❖ http://developers.memsql.com/docs/latest/concepts/
dev_concepts.html

❖ http://developers.memsql.com/docs/2.6/admin/
high_availability.html

http://developers.memsql.com/docs/latest/concepts/dev_concepts.html
http://developers.memsql.com/docs/2.6/admin/high_availability.htm

