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15 mln users in 25 countries managed from Berlin HQ Who and what 
we are



Moreover, we are Who and what 
we are

80
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DB engineers

TBs
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This is about fast delivery What’s this 
about

First, what it’s not about:
● It’s not about Postgres performance
● It’s not about new features of Postgres
● First part is not even about Postgres itself!

So what is it about?
● It’s about continuous delivery on Postgres
● It’s about how to effectively develop on Postgres on a daily basis and deliver 

high quality stable code to end users 



This is about fast development What’s this 
about

For us Postgres is not only a DBMS. It’s a

Development environment
…and maybe someday a data operating system
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Open issues What is the 
problem

● Delivery of feature can’t 
happen till all version is 
ready

● How to handle ad-hoc 
requests

● How to plan resources 
for versions

● What IDE choose to 
write the code

● How to debug it
● How to run it
● How to test it

● How to roll-out to 
different environments

● How to safely change 
DB structure

● How to keep control 
over DB change

Preparation/Requirements Development DevOps



Area of focus and goals What is the 
problem

Preparation/Requirements Development DevOps

1-2 weeks 1-2 weeks 1d

Days Days Minutes
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Package manager for PostgreSQL How are we 
planning to fix it

https://github.com/affinitas/

pgpm



This is about fast delivery How are we 
planning to fix it

● It deploys packages
● It installs itself 
● It provides api for correct package importing 

using search_path (to be released v0.0.4)
● It resolves dependencies (to be released v0.

0.4)
● It helps versioning and source control (under 

development - v0.1.0)



pgpm package configuration How are we 
planning to fix it

{
   "description"    : "Servicetool API" ,
   "name"           : "edarling_servicetool_api",
   "version"        : "01_09_00",
   "class"          : "postgres_sql",
   "subclass"       : "versioned",
   "types_path"     : "types",
   "functions_path" : "functions"
}



pgpm installation How are we 
planning to fix it

$ pgpm install <connection_string>

DO
$$BEGIN
   -- Schema will have all info regarding packages. Name, version, dependencies, etc.
   CREATE SCHEMA _pgpm;
   -- Version of package. Tries to follow semver as much as possible considering limited allowed characters
   -- for schema name
   CREATE TYPE _pgpm.package_version as
   (
       major smallint NOT NULL DEFAULT 0,
       minor smallint NOT NULL DEFAULT 0,
       patch smallint NOT NULL DEFAULT 0,
       pre character varying(255),
       metadata character varying(255)
   );
   -- class of package. Can refer to function/types schema, DDL schema
   CREATE TABLE _pgpm.package_classes
   (
       pkg_c_id serial NOT NULL,
       pkg_c_name character varying(255),
       pkg_c_created timestamp without time zone DEFAULT now(),
       pkg_c_last_modified timestamp without time zone DEFAULT now(),
       CONSTRAINT package_class_pkey PRIMARY KEY (pkg_c_id),
   );
   INSERT INTO _pgpm.package_classes (pkg_c_name)
       VALUES ('postgres_sql');
   INSERT INTO _pgpm.package_classes (pkg_c_name)
       VALUES ('postgres_ddl');

   -- subclass of package. Can refer either versioned schema (that adds suffix at the end) or non-versioned
   CREATE TABLE _pgpm.package_subclasses
   (
       pkg_sc_id serial NOT NULL,
       pkg_sc_name character varying(255),
       pkg_sc_created timestamp without time zone DEFAULT now(),
       pkg_sc_last_modified timestamp without time zone DEFAULT now(),
       CONSTRAINT package_class_pkey PRIMARY KEY (pkg_sc_id),
   );
   INSERT INTO _pgpm.package_subclasses (pkg_sc_name)
       VALUES ('versioned');
   INSERT INTO _pgpm.package_subclasses (pkg_sc_name)
       VALUES ('basic');

   -- info on packages
   CREATE TABLE _pgpm.packages
   (
       pkg_id serial NOT NULL,
       pkg_name character varying(255),
       pkg_description text,
       pkg_version _pgpm.package_version,
       pkg_class integer,
       pkg_subclass integer,
       pkg_dependencies
       pkg_created timestamp without time zone DEFAULT now(),
       pkg_last_modified timestamp without time zone DEFAULT statement_timestamp(),
       CONSTRAINT package_pkey PRIMARY KEY (pkg_id),
       CONSTRAINT package_class_fkey FOREIGN KEY (pkg_class) REFERENCES _pgpm.package_classes (pkg_c_id)
       CONSTRAINT package_subclass_fkey FOREIGN KEY (pkg_subclass) REFERENCES _pgpm.package_subclasses 
(pkg_sc_id)
   );

   -- info on package dependencies
   CREATE TABLE _pgpm.package_dependencies
   (
       pkg_dep_id serial NOT NULL,
       pkg_link_core_id integer NOT NULL,
       pkg_link_dep_id integer NOT NULL CHECK (pkg_link_core_id <> pkg_link_dep_id)
       CONSTRAINT package_dependency_pkey PRIMARY KEY (pkg_dep_id),
       CONSTRAINT package_link_core_fkey FOREIGN KEY (pkg_link_core_id) REFERENCES _pgpm.packages (pkg_id)
       CONSTRAINT package_link_dependency_fkey FOREIGN KEY (pkg_link_dep_id) REFERENCES _pgpm.packages (pkg_id)
   );

END$$;



pgpm deployment How are we 
planning to fix it

$ pgpm deploy <connection_string> 
[-m | --mode <mode>]
[-o | --owner <owner_role>]
[-u | --user <user_role>...]
[-f | --file <file_name>...]

           elif arguments['--mode'][0] == 'moderate':
               _old_schema_exists = True
               _old_schema_rev = 0
               while _old_schema_exists:
                   cur.execute("SELECT EXISTS (SELECT schema_name FROM information_schema.schemata "
                               "WHERE schema_name = %s);", (schema_name + '_' + str(_old_schema_rev),))
                   _old_schema_exists = cur.fetchone()[0]
                   if _old_schema_exists:
                       _old_schema_rev += 1
               _old_schema_name = schema_name + '_' + str(_old_schema_rev)
               print('Schema already exists. It will be renamed to {0} in moderate mode. Renaming...'
                     .format(_old_schema_name))
               _rename_schema_script = "\nALTER SCHEMA " + schema_name + " RENAME TO " + _old_schema_name + ";\n"
               cur.execute(_rename_schema_script)
               print('Schema {0} was renamed to {1}.'.format(schema_name, _old_schema_name))
               create_db_schema(cur, schema_name, user_roles, owner_role)
           else:
               _drop_schema_script = "\nDROP SCHEMA " + schema_name + " CASCADE;\n"
               cur.execute(_drop_schema_script)
               print('Droping old schema {0}'.format(schema_name))
               create_db_schema(cur, schema_name, user_roles, owner_role)

       # Reordering and executing types
       if types_files_count > 0:
           if arguments['--file']:
               print('Deploying types definition scripts in existing schema without dropping it first '
                     'is not support yet. Skipping')
           else:
               type_ordered_scripts, type_unordered_scripts = reorder_types(types_script)
               # print('\n'.join(type_ordered_scripts)) # uncomment for debug
               # print('\n'.join(type_unordered_scripts)) # uncomment for debug
               if type_ordered_scripts:
                   cur.execute('\n'.join(type_ordered_scripts))
               if type_unordered_scripts:
                   cur.execute('\n'.join(type_unordered_scripts))
               print('Types loaded to schema {0}'.format(schema_name))
       else:
           print('No type scripts to deploy')

       # Executing functions
       if functions_files_count > 0:
           print('Running functions definitions scripts')
           cur.execute(functions_script)
           print('Functions loaded to schema {0}'.format(schema_name))
       else:
           print('No function scripts to deploy')

       # Commit transaction
       conn.commit()

       close_db_conn(cur, conn, arguments.get('<connection_string>'))

   else:
       print(arguments)

if __name__ == '__main__':
   main()



Thank you
https://tech.affinitas.de

artem.panchoyan@affinitas.de
skype: ponchic
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