
Continuous delivery in Postgres-centric
solutions

Artem Panchoyan

Who and what we are

Agenda

What’s this about
What is the problem
How we are planning to fix it

15 mln users in 25 countries managed from Berlin HQ Who and what
we are

Moreover, we are Who and what
we are

80
Databases

10
DB engineers

TBs
of data

300
people

Who and what we are

Agenda

What’s this about
What is the problem
How we are planning to fix it

This is about fast delivery What’s this
about

First, what it’s not about:
● It’s not about Postgres performance
● It’s not about new features of Postgres
● First part is not even about Postgres itself!

So what is it about?
● It’s about continuous delivery on Postgres
● It’s about how to effectively develop on Postgres on a daily basis and deliver

high quality stable code to end users

This is about fast development What’s this
about

For us Postgres is not only a DBMS. It’s a

Development environment
…and maybe someday a data operating system

Who and what we are

Agenda

What’s this about
What is the problem
How we are planning to fix it

Open issues What is the
problem

● Delivery of feature can’t
happen till all version is
ready

● How to handle ad-hoc
requests

● How to plan resources
for versions

● What IDE choose to
write the code

● How to debug it
● How to run it
● How to test it

● How to roll-out to
different environments

● How to safely change
DB structure

● How to keep control
over DB change

Preparation/Requirements Development DevOps

Area of focus and goals What is the
problem

Preparation/Requirements Development DevOps

1-2 weeks 1-2 weeks 1d

Days Days Minutes

Who and what we are

Agenda

What’s this about
What is the problem
How we are planning to fix it

Package manager for PostgreSQL How are we
planning to fix it

https://github.com/affinitas/

pgpm

This is about fast delivery How are we
planning to fix it

● It deploys packages
● It installs itself
● It provides api for correct package importing

using search_path (to be released v0.0.4)
● It resolves dependencies (to be released v0.

0.4)
● It helps versioning and source control (under

development - v0.1.0)

pgpm package configuration How are we
planning to fix it

{
 "description" : "Servicetool API" ,
 "name" : "edarling_servicetool_api",
 "version" : "01_09_00",
 "class" : "postgres_sql",
 "subclass" : "versioned",
 "types_path" : "types",
 "functions_path" : "functions"
}

pgpm installation How are we
planning to fix it

$ pgpm install <connection_string>

DO
$$BEGIN
 -- Schema will have all info regarding packages. Name, version, dependencies, etc.
 CREATE SCHEMA _pgpm;
 -- Version of package. Tries to follow semver as much as possible considering limited allowed characters
 -- for schema name
 CREATE TYPE _pgpm.package_version as
 (
 major smallint NOT NULL DEFAULT 0,
 minor smallint NOT NULL DEFAULT 0,
 patch smallint NOT NULL DEFAULT 0,
 pre character varying(255),
 metadata character varying(255)
);
 -- class of package. Can refer to function/types schema, DDL schema
 CREATE TABLE _pgpm.package_classes
 (
 pkg_c_id serial NOT NULL,
 pkg_c_name character varying(255),
 pkg_c_created timestamp without time zone DEFAULT now(),
 pkg_c_last_modified timestamp without time zone DEFAULT now(),
 CONSTRAINT package_class_pkey PRIMARY KEY (pkg_c_id),
);
 INSERT INTO _pgpm.package_classes (pkg_c_name)
 VALUES ('postgres_sql');
 INSERT INTO _pgpm.package_classes (pkg_c_name)
 VALUES ('postgres_ddl');

 -- subclass of package. Can refer either versioned schema (that adds suffix at the end) or non-versioned
 CREATE TABLE _pgpm.package_subclasses
 (
 pkg_sc_id serial NOT NULL,
 pkg_sc_name character varying(255),
 pkg_sc_created timestamp without time zone DEFAULT now(),
 pkg_sc_last_modified timestamp without time zone DEFAULT now(),
 CONSTRAINT package_class_pkey PRIMARY KEY (pkg_sc_id),
);
 INSERT INTO _pgpm.package_subclasses (pkg_sc_name)
 VALUES ('versioned');
 INSERT INTO _pgpm.package_subclasses (pkg_sc_name)
 VALUES ('basic');

 -- info on packages
 CREATE TABLE _pgpm.packages
 (
 pkg_id serial NOT NULL,
 pkg_name character varying(255),
 pkg_description text,
 pkg_version _pgpm.package_version,
 pkg_class integer,
 pkg_subclass integer,
 pkg_dependencies
 pkg_created timestamp without time zone DEFAULT now(),
 pkg_last_modified timestamp without time zone DEFAULT statement_timestamp(),
 CONSTRAINT package_pkey PRIMARY KEY (pkg_id),
 CONSTRAINT package_class_fkey FOREIGN KEY (pkg_class) REFERENCES _pgpm.package_classes (pkg_c_id)
 CONSTRAINT package_subclass_fkey FOREIGN KEY (pkg_subclass) REFERENCES _pgpm.package_subclasses
(pkg_sc_id)
);

 -- info on package dependencies
 CREATE TABLE _pgpm.package_dependencies
 (
 pkg_dep_id serial NOT NULL,
 pkg_link_core_id integer NOT NULL,
 pkg_link_dep_id integer NOT NULL CHECK (pkg_link_core_id <> pkg_link_dep_id)
 CONSTRAINT package_dependency_pkey PRIMARY KEY (pkg_dep_id),
 CONSTRAINT package_link_core_fkey FOREIGN KEY (pkg_link_core_id) REFERENCES _pgpm.packages (pkg_id)
 CONSTRAINT package_link_dependency_fkey FOREIGN KEY (pkg_link_dep_id) REFERENCES _pgpm.packages (pkg_id)
);

END$$;

pgpm deployment How are we
planning to fix it

$ pgpm deploy <connection_string>
[-m | --mode <mode>]
[-o | --owner <owner_role>]
[-u | --user <user_role>...]
[-f | --file <file_name>...]

 elif arguments['--mode'][0] == 'moderate':
 _old_schema_exists = True
 _old_schema_rev = 0
 while _old_schema_exists:
 cur.execute("SELECT EXISTS (SELECT schema_name FROM information_schema.schemata "
 "WHERE schema_name = %s);", (schema_name + '_' + str(_old_schema_rev),))
 _old_schema_exists = cur.fetchone()[0]
 if _old_schema_exists:
 _old_schema_rev += 1
 _old_schema_name = schema_name + '_' + str(_old_schema_rev)
 print('Schema already exists. It will be renamed to {0} in moderate mode. Renaming...'
 .format(_old_schema_name))
 _rename_schema_script = "\nALTER SCHEMA " + schema_name + " RENAME TO " + _old_schema_name + ";\n"
 cur.execute(_rename_schema_script)
 print('Schema {0} was renamed to {1}.'.format(schema_name, _old_schema_name))
 create_db_schema(cur, schema_name, user_roles, owner_role)
 else:
 _drop_schema_script = "\nDROP SCHEMA " + schema_name + " CASCADE;\n"
 cur.execute(_drop_schema_script)
 print('Droping old schema {0}'.format(schema_name))
 create_db_schema(cur, schema_name, user_roles, owner_role)

 # Reordering and executing types
 if types_files_count > 0:
 if arguments['--file']:
 print('Deploying types definition scripts in existing schema without dropping it first '
 'is not support yet. Skipping')
 else:
 type_ordered_scripts, type_unordered_scripts = reorder_types(types_script)
 # print('\n'.join(type_ordered_scripts)) # uncomment for debug
 # print('\n'.join(type_unordered_scripts)) # uncomment for debug
 if type_ordered_scripts:
 cur.execute('\n'.join(type_ordered_scripts))
 if type_unordered_scripts:
 cur.execute('\n'.join(type_unordered_scripts))
 print('Types loaded to schema {0}'.format(schema_name))
 else:
 print('No type scripts to deploy')

 # Executing functions
 if functions_files_count > 0:
 print('Running functions definitions scripts')
 cur.execute(functions_script)
 print('Functions loaded to schema {0}'.format(schema_name))
 else:
 print('No function scripts to deploy')

 # Commit transaction
 conn.commit()

 close_db_conn(cur, conn, arguments.get('<connection_string>'))

 else:
 print(arguments)

if __name__ == '__main__':
 main()

Thank you
https://tech.affinitas.de

artem.panchoyan@affinitas.de
skype: ponchic

mailto:artem.panchoyan@affinitas.de
mailto:artem.panchoyan@affinitas.de

