
Horizontal scaling with PL/Proxy

Jan Urbański
jan@newrelic.com

New Relic

PGConf.Russia 2015, Moscow, February 7

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 1 / 48

Scaling PostgreSQL horizontally Problem definition

Outline

1 Scaling PostgreSQL horizontally
Problem definition
Getting ready to scale

2 The PL/Proxy language

3 PgBouncer

4 Usage scenarios

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 2 / 48

Scaling PostgreSQL horizontally Problem definition

PostgreSQL in the VPS world

I maximum capacity of available machines is limited

I however, the number of available machines is limitless

I need to be able to add resources without disrupting current operations

I hosts will fail: not if but when

I typical for VPS scenarios, but enforces good engineering practices
even if you manage your own metal

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 3 / 48

Scaling PostgreSQL horizontally Problem definition

Challenges

I normalisation goes out the window
I idea: independent parts of the application get independent database

hosts
I not friendly for developers, who need to manage the complexity inside

the app
I oftentimes, not effective: a single module’s data outgrows the biggest

available node

I plan for using multiple machines from the beginning

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 4 / 48

Scaling PostgreSQL horizontally Getting ready to scale

Outline

1 Scaling PostgreSQL horizontally
Problem definition
Getting ready to scale

2 The PL/Proxy language

3 PgBouncer

4 Usage scenarios

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 5 / 48

Scaling PostgreSQL horizontally Getting ready to scale

Stored procedure API layer

I route application data access through stored procedures

BAD

insert into orders (select * from parts join ... where

tmpl = $1 and user id = $2 ...)

WORSE

Order.new(Parts.find(:tmpl id =>

tmpl id).includes(...).where(:user id => user id)).save!

BETTER

select create order(tmpl id, user id)

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 6 / 48

Scaling PostgreSQL horizontally Getting ready to scale

Stored procedure API layer

I route application data access through stored procedures

BAD

insert into orders (select * from parts join ... where

tmpl = $1 and user id = $2 ...)

WORSE

Order.new(Parts.find(:tmpl id =>

tmpl id).includes(...).where(:user id => user id)).save!

BETTER

select create order(tmpl id, user id)

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 6 / 48

Scaling PostgreSQL horizontally Getting ready to scale

Stored procedure API layer

I route application data access through stored procedures

BAD

insert into orders (select * from parts join ... where

tmpl = $1 and user id = $2 ...)

WORSE

Order.new(Parts.find(:tmpl id =>

tmpl id).includes(...).where(:user id => user id)).save!

BETTER

select create order(tmpl id, user id)

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 6 / 48

Scaling PostgreSQL horizontally Getting ready to scale

Stored procedure API layer

I route application data access through stored procedures

BAD

insert into orders (select * from parts join ... where

tmpl = $1 and user id = $2 ...)

WORSE

Order.new(Parts.find(:tmpl id =>

tmpl id).includes(...).where(:user id => user id)).save!

BETTER

select create order(tmpl id, user id)

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 6 / 48

Scaling PostgreSQL horizontally Getting ready to scale

Stored procedure API layer cont.

I database people regain control over database access

I much bigger freedom to do schema changes

I defines a clean interface between developers and DBAs
I it’s not an all or nothing proposition!

I define a procedural API to the hottest part of the database
I keep accessing the rest through evil ORMs or whatever else

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 7 / 48

The PL/Proxy language How PL/Proxy works

Outline

1 Scaling PostgreSQL horizontally

2 The PL/Proxy language
How PL/Proxy works
Language syntax

3 PgBouncer

4 Usage scenarios

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 8 / 48

The PL/Proxy language How PL/Proxy works

Proxy functions

I a language for writing remote procedure calls

I very simple syntax, just a few constructs

I only handles connection and distribution, the rest is built on top of
existing mechanisms

I could mostly be reimplemented in any unsafe procedural language
(PL/PerlU, PL/PythonU) or with dblink

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 9 / 48

The PL/Proxy language How PL/Proxy works

Function execution

I user calls a PL/Proxy function

I the system determines the target host

I a persistent connection to that host is opened

I code is run on the remote side

I result is sent back to the original PL/Proxy function caller

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 10 / 48

The PL/Proxy language How PL/Proxy works

Simple proxy function example

Execute function on remote host

create function create_order(tmpl_id int, account_id int)

returns orders

language plproxy

as $func$

connect ’host=10.0.10.1 dbname=orders’;

$func$;

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 11 / 48

The PL/Proxy language How PL/Proxy works

Determining code to run

I by default, an identically named procedure is called on the remote side

I arguments are passed to the remote procedure

I the result type is validated against the proxy function’s result type

I this makes it completely transparent to the caller

I you can seamlessly (and gradually) substitute your regular stored
procedures with PL/Proxy functions

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 12 / 48

The PL/Proxy language Language syntax

Outline

1 Scaling PostgreSQL horizontally

2 The PL/Proxy language
How PL/Proxy works
Language syntax

3 PgBouncer

4 Usage scenarios

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 13 / 48

The PL/Proxy language Language syntax

CONNECT

I connect specifies a libpq connection string
I several ways of specifying the string

I a literal string
I one of the arguments of the procedure
I a function invocation

I useful for static partitioning or local testing

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 14 / 48

The PL/Proxy language Language syntax

Simple proxy function example

Execute function on remote host

create function create_order(tmpl_id int, account_id int)

returns orders

language plproxy

as $func$

connect ’host=10.0.10.1 dbname=orders’;

$func$;

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 15 / 48

The PL/Proxy language Language syntax

CLUSTER and RUN ON

I hardcoding connection strings won’t work if you have your data
partitioned

I for partitioned setups, cluster and run on are the solution

I cluster allows specifying the set of hosts where the function might
run

I run on takes a partitioning key, calculates the partition number and
runs the function

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 16 / 48

The PL/Proxy language Language syntax

RUN ON cont

I run on any and run on all exist as well
I with run an all the query is run in parallel on all partitions
I results are combined and returned to the caller

I the partitioning key can also be specified using a function invocation

I built-in function hashtext creating stable hashes of text values

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 17 / 48

The PL/Proxy language Language syntax

CLUSTER and RUN ON example

Partitioning

create function create_order(tmpl_id int, account_id int)

returns orders

language plproxy

as $func$

cluster ’appdata’;

run on account_id;

$func$;

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 18 / 48

The PL/Proxy language Language syntax

Partitioning internals

I a cluster is a list of connection strings
I PL/Proxy requires the number of partitions to be a power of 2

I annoying, but not that much
I you can use the same connection strings for several partitions
I changing the number of partitions is a pain, plan ahead and start with

32 partitions

I the partitioning key needs to be an integer (int4 or int8)

I the target partition is determined with a simple mod

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 19 / 48

The PL/Proxy language Language syntax

Defining clusters

I a legacy procedure-based approach
I procedures in other languages to return partition lists and config
I need to manage several of them, additional warts regarding caching
I much easier to use the foreign server interface

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 20 / 48

The PL/Proxy language Language syntax

Defining clusters cont

I PL/Proxy now provides a foreign data wrapper

I use create server to define clusters

I use a number of options called p0, p1, p2, ... with values being
connection strings

I user mappings can supply additional libpq parameters

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 21 / 48

The PL/Proxy language Language syntax

Foreign data wrapper configuration

Defining a cluster

create server appdata foreign data wrapper plproxy options (

p0 ’dbname=appdata1 host=10.0.10.1’,

p1 ’dbname=appdata2 host=10.0.10.2’

);

create user mapping for webserver server appdata options (

password ’tiger’

);

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 22 / 48

The PL/Proxy language Language syntax

SPLIT

I split is a way to write queries that need to access more than one
partition

I the PL/Proxy procedure should receive equal-length arrays of
arguments

I an array of the same length should be passed to run on

I for each run on element, the specified partition gets a call with an
array of corresponding arguments

I once all queries are complete, result are stitched together and returned

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 23 / 48

The PL/Proxy language Language syntax

SPLIT example

Accessing multiple partitions

create function latest_orders(tmpl_ids int[],

account_ids int[])

returns setof orders

language plproxy

as $func$

cluster ’appdata’;

split all; -- shorthand for "split tmpl_ids, account_ids;"

run on account_ids;

$func$;

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 24 / 48

The PL/Proxy language Language syntax

Limitations

I no transactional guarantees!
I changing the partitioning key is a huge hassle

I but then again, in which partitioning technology it isn’t?

I eventually, a connection will be open from every backend to every
partition

I to avoid keeping lots of backends running, use PgBouncer

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 25 / 48

PgBouncer Using PgBouncer with PL/Proxy

Outline

1 Scaling PostgreSQL horizontally

2 The PL/Proxy language

3 PgBouncer
Using PgBouncer with PL/Proxy

4 Usage scenarios

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 26 / 48

PgBouncer Using PgBouncer with PL/Proxy

What is PgBouncer?

I a connection pooler for PostgreSQL, implementing the Postgres
protocol

I sibling project to PL/Proxy
I in fact, they used to be bundled together, now they’re both standalone

projects

I very useful even if you’re not using PL/Proxy
I helps with web apps that don’t support persistent connections
I has a bunch tricks that make operating a Postgres cluster simpler

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 27 / 48

PgBouncer Using PgBouncer with PL/Proxy

How does PgBouncer work?

I configure a list of database that the pooler will handle

I PgBouncer listens for Postgres protocol connections and parses the
startup packet

I it then proxies queries to the appropriate database, possibly reusing
previously opened connections

I no forking, no backend startup overhead, can handle hundreds of
connections per second

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 28 / 48

PgBouncer Using PgBouncer with PL/Proxy

PgBouncer operating modes

I reusing connections breaks some features
I transactions
I session parameter changes, prepared plans
I the list goes on...

I the pooler can use one of several modes
I session mode, connections reused only if client disconnects
I transaction mode, connections reused when client commits
I statement mode, like transaction mode, but transactions are disabled

I statement mode is meant to be used with PL/Proxy

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 29 / 48

PgBouncer Using PgBouncer with PL/Proxy

PgBouncer tricks

I set timeout on idle in transaction connections

I runtime config changes
I pausing access to a given database

I starts queueing new queries to the database
I waits while all active queries are finished
I disconnects from the database
I allows restarting the database without clients noticing

I online restart
I start a new pooler process, transfer active TCP connections
I allows restarting the pooler without clients noticing

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 30 / 48

Usage scenarios AKA stories from the trenches

Outline

1 Scaling PostgreSQL horizontally

2 The PL/Proxy language

3 PgBouncer

4 Usage scenarios
AKA stories from the trenches

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 31 / 48

Usage scenarios AKA stories from the trenches

Setting up the cluster

I use a dedicated database as a “shell” with all the PL/Proxy functions

I run PgBouncer in statement mode on each partition host
I run PgBouncer on the shell host, too

I if shell is 100% PL/Proxy, it can use statement mode
I typically, the shell contains app data that didn’t need to be partitioned
I in that case, use session or transaction mode

I partitions only get connections from the shell Postgres

I the shell only gets connections from PgBouncer

I be ruthless with iptables and pg hba.conf

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 32 / 48

Usage scenarios AKA stories from the trenches

Setting up the cluster - diagram

Application

PL/Proxy PL/ProxyPL/Proxy

PgBouncer
S/T mode

Shell
database

PgBouncer
statement mode

PgBouncer
statement mode

Partition
database

Partition
database

PgBouncer
statement mode

Partition
database

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 33 / 48

Usage scenarios AKA stories from the trenches

Online reconfiguration

I changing cluster configuration is just an alter server

I changes applied immediately and atomically
I it’s even transactional!

I server settings can include things like TCP keepalives

I PL/Proxy triggers run as the table owner, be sure to add a user
mapping for them

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 34 / 48

Usage scenarios AKA stories from the trenches

Upgrading hardware on partition host

Zero downtime database hardware upgrade:

1 set up streaming replication to the new host

2 pause access to the old host via PgBouncer

3 promote the replica

4 change PgBouncer config on old host to point to new host

5 unpause PgBouncer on old host

6 alter PL/Proxy settings on shell to point to new host

7 once old host has no connections, decommission it

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 35 / 48

Usage scenarios AKA stories from the trenches

Upgrading hardware - diagram

replication

PgBouncer
statement mode

New partition
database
(replica)

Application

PL/Proxy PL/ProxyPL/Proxy

PgBouncer
S/T mode

Shell
database

PgBouncer
statement mode

PgBouncer
statement mode

Partition
database

Old partition
database
(primary)

PgBouncer
statement mode

Partition
database

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 36 / 48

Usage scenarios AKA stories from the trenches

Upgrading hardware - diagram

replication

PgBouncer
statement mode

New partition
database
(replica)

Application

PL/Proxy PL/ProxyPL/Proxy

PgBouncer
S/T mode

Shell
database

PgBouncer
statement mode

PgBouncer
statement mode

Partition
database

Old partition
database
(primary)

PgBouncer
statement mode

Partition
database

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 37 / 48

Usage scenarios AKA stories from the trenches

Upgrading hardware - diagram

PgBouncer
statement mode

New partition
database
(primary)

Application

PL/Proxy PL/ProxyPL/Proxy

PgBouncer
S/T mode

Shell
database

PgBouncer
statement mode

PgBouncer
statement mode

Partition
database

Old partition
database
(primary)

PgBouncer
statement mode

Partition
database

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 38 / 48

Usage scenarios AKA stories from the trenches

Upgrading hardware - diagram

PgBouncer
statement mode

Partition
database

Application

PL/Proxy PL/ProxyPL/Proxy

PgBouncer
S/T mode

Shell
database

PgBouncer
statement mode

PgBouncer
statement mode

Partition
database

Old partition
database

PgBouncer
statement mode

Partition
database

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 39 / 48

Usage scenarios AKA stories from the trenches

Upgrading hardware - diagram

PgBouncer
statement mode

Partition
database

Application

PL/Proxy PL/ProxyPL/Proxy

PgBouncer
S/T mode

Shell
database

PgBouncer
statement mode

PgBouncer
statement mode

Partition
database

Old partition
database

PgBouncer
statement mode

Partition
database

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 40 / 48

Usage scenarios AKA stories from the trenches

Upgrading hardware - diagram

PgBouncer
statement mode

Partition
database

Application

PL/Proxy PL/ProxyPL/Proxy

PgBouncer
S/T mode

Shell
database

PgBouncer
statement mode

Partition
database

PgBouncer
statement mode

Partition
database

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 41 / 48

Usage scenarios AKA stories from the trenches

Adding a new partition

Splitting data from partition A to B:

1 create a migrated table to list already migrated IDs

2 write custom partitioning function

1 calculate target partition
2 return it if it’s not A
3 looks it up in migrated, return B if found
4 return A

3 alter PL/Proxy functions to use the new function

4 kick off migration process, update migrated as you go

5 once all data is migrated, alter the foreign server config and restore
original PL/Proxy partitioning function definition

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 42 / 48

Usage scenarios AKA stories from the trenches

Adding a partition - diagram

migrated

account_id int

Application

PL/ProxyPL/Proxy

PgBouncer
S/T mode

Shell
database

PgBouncer
statement mode

Partition
database

PgBouncer
statement mode

Partition
database

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 43 / 48

Usage scenarios AKA stories from the trenches

Adding a partition - diagram

PL/Proxy

PgBouncer
statement mode

migrated

account_id int

Application

PL/Proxy

PgBouncer
S/T mode

Shell
database

PgBouncer
statement mode

New partition
database

Partition
database

PgBouncer
statement mode

Partition
database

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 44 / 48

Usage scenarios AKA stories from the trenches

Adding a partition - diagram

already migrated?

PL/ProxyPL/Proxy

PgBouncer
statement mode

migrated

account_id int

Application

PL/Proxy

PgBouncer
S/T mode

Shell
database

PgBouncer
statement mode

New partition
database

Partition
database

PgBouncer
statement mode

Partition
database

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 45 / 48

Usage scenarios AKA stories from the trenches

Adding a partition - diagram

migration process

already migrated?

PL/ProxyPL/Proxy

PgBouncer
statement mode

migrated

account_id int

Application

PL/Proxy

PgBouncer
S/T mode

Shell
database

PgBouncer
statement mode

New partition
database

Partition
database

PgBouncer
statement mode

Partition
database

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 46 / 48

Usage scenarios AKA stories from the trenches

Adding a partition - diagram

PgBouncer
statement mode

PL/Proxy

Partition
database

PL/Proxy

PgBouncer
statement mode

Application

PL/Proxy

PgBouncer
S/T mode

Shell
database

Partition
database

PgBouncer
statement mode

Partition
database

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 47 / 48

Usage scenarios Questions

Questions?

Jan Urbański (New Relic) Horizontal scaling with PL/Proxy PGConf.Russia 2015 48 / 48

	Scaling PostgreSQL horizontally
	Problem definition
	Getting ready to scale

	The PL/Proxy language
	How PL/Proxy works
	Language syntax

	PgBouncer
	Using PgBouncer with PL/Proxy

	Usage scenarios
	AKA stories from the trenches

