: : ‘ g
Still using 2088
Windows 3.17 [E

| MICROSOFT.
So why stick to WINDOWS.

S I _9:2 ? Version 3.1
|
Copyright © Microsoft Corporation 1985-1992
&1l Rig :

Modern SQL in PostgreSQL
@MarkusWinand

SO 1999

LATERAL

| ATERAL Belore SQL: 1999

Inline views can't refer to outside the view:

SELECT *
FROM t1
JOIN (SELECT *
FROM t2
WHERE t2.x = Tl.Xx
) inline view

| ATERAL Belore SQL: 1999

Inline views can't refer to outside the view:

SELECT *
FROM t1
JOIN (SELECT *

FROM t2
WHERE t2.X
) inline view

| ATERAL Belore SQL: 1999

Inline views can't refer to outside the view:

SELECT *
FROM t1
JOIN (SELECT *
FROM t2 5

WHERE @ | o)
) inline_v?} Eihﬂrg

ON (inline view.x = tl1l.Xx)

LATERAL Since SO 1999

SQL:99 LATERAL views can:

SELECT *
FROM t1
JOIN LATERAL (SELECT *
FROM t2
WHERE t2.x = t1.X
) inline view
ON (true)

LATERAL Since SO 1999

SQL:99 LATERAL views can:

40
SELECT * Jali %)ﬁ(ngL
FROM t1 L A ord
JOIN LATERAL (SELECT * keY
FROM t2

WHERE t2.X
) inline view

ON (true)

LATERAL Since SO 1999

SQL:99 LATERAL views can:

40
1 dUE |
SELECT * lid 22 A
FROM t1 Va 1,/”/6 ro
JOIN LATERAL (SELECT *

] FROM t2
WHERE t2.X
) inline view

But WHY"

LATERAL and taple functions

Join table functions:

SELECT t1.id, tf.*
FROM t1
JOIN LATERAL table function(tl.id) tf
ON (true)

Note: This is PostgreSQL specific. LATERAL IS
even optional here.
The ISO standard foresees TABLE () for
this use case.

LATERAL and lop-N per Group

Apply LIMIT per row from previous table:

SELECT top products.*
FROM categories c
JOIN LATERAL (SELECT *
FROM products p
WHERE p.cat = c.cat
ORDER BY p.rank DESC
LIMIT 3
) top products

LATERAL and Mult-Source Top-IN

Get the 10 most recent news for subscribed topics:

SELECT n.*
FROM news n
JOIN subscriptions s
ON (n.topic = s.topic)
WHERE s.user = ?
ORDER BY n.created DESC
LIMIT 10

LATERAL and Mult-Source Top-IN

Limit (time=236707 rows=10)
-> Sort (time=236707 rows=10)
Sort Method: top-N heapsort Mem: 30kB
-> Hash Join (time=233800 rows=905029)
-> Seg Scan on subscriptions s
(time=369 rows=80)
-> Hash (time=104986 rows=10"7)
-> Seg Scan on news n
(time=91218 rows=10"7)
Planning time: 0.294 ms
Execution time: 236707.261 ms

LATERAL and Mult-Source Top-IN

Limit (time=236707 rows=10)

-> Sort (time=236707 rows=10)
Sort Method: top-N heapsort Mem: 30kB
-> Hash Join (time=233800 rows=905029)
‘§7 -> Seg Scan on subscriptions s

S (time=369 rows=80)

é3§§ -> Hash (time=104986 rows=10"7)
% -> 5eq Scan on news n

(time=91218 rows=10"7)
Planning time: 0.294 ms
Execution time: 236707.261 ms

LATERAL and Mult-Source Top-IN

Limit (time=236707 rows=10) 5%”?7X9

-> Sort (time=236707 rows=10) Sdtce
Sort Method: top-N heapsort Mem: 30kB
-> Hash Join (time=233800 rows=905029)
‘§7 -> Seg Scan on subscriptions s

S (time=369 rows=80)

é3§§ -> Hash (time=104986 rows=10"7)
% -> 5eq Scan on news n

(time=91218 rows=10"7)
Planning time: 0.294 ms
Execution time: 236707.261 ms

LATERAL and Mult-Source Top-IN

Limit (time=236707 s=10) So
-> Sort (times Why
Sort Meth praducing Mem: 30kB
-> Hash Joi 700 roaﬁldé rows=905029)
‘§7 -> Seg Scan on subscriptions s
S (time=369 rows=80)
é3§§ -> Hash (time=104986 rows=10"7)
% -> 5eq Scan on news n
(time=91218 rows=10"7)
Planning time: 0.294 ms
Execution time: 236707.261 ms

LATERAL and Mult-Source Top-IN

Limit (time=236707 s=10) So,
-> Sort (times Why
Sort Meth praducing Mem: 30kB
-> Hash Joi 700 roaﬁldé rows=905029)
‘gj -> Seq Scan on subscriptions s
SN (time=369 rows=80
‘Q%\ -> Hash (time=10498
>
U

—

.0 1en Chere
are only $0O
S é(AS Cr/pZ‘/on\S 7

-> Seg Scan on
(time=91218

Planning time: 0.294 ms
Execution time: 236707.261 ms

LATERAL and Muli=o e [op-N

Limit (tiy On/y Zhe 10 »osST ’
> S0Pt (opent per S wbs cr/‘pit‘on) “Ce
gt you rneed. 30KkB
©5029)

2 £ 10NS S

time=369 rows=80)
Hash (time=104986 rows=10"7)
-> Seg Scan on news n
(time=91218 rows=10"7)
time: 0.294 ms
time: 236707.261 ms

w —

LATERAL and Mult-Source Top-IN

SELECT n.*
FROM subscriptions s
JOIN LATERAL (SELECT *
FROM news n
WHERE n.topic = s.topic
ORDER BY n.created DESC
LIMIT 10
) top news ON (true)
WHERE s.user 1d = ?
ORDER BY n.created DESC
LIMIT 10

LATERAL and Mult-Source Top-IN

Limit (time=2.488 rows=10)
-> Sort (time=2.487 rows=10)
-> Nested Loop (time=2.339 rows=800)
-> Index Only Scan using pk on s
(time=0.042 rows=80)
-> Limit
(time=0.027 rows=10 loops=80)
-> Index Scan Backward
using news topic ts id on n
Planning time: 0.161 ms
Execution time: 2.519 ms

LATERAL and Multl-50

Limit (time=2.488 rows=10)
-> Sort (time=2.487 rows=10)
-> Nested Loop (time=2.339 rows=800)
-> Index Only Scan using pk on s
(time=0.042 rows=80)
-> Limit
(time=0.027 rows=10 loops=80)
-> Index Scan Backward
using news topic ts id on n
Planning time: 0.161 ms
Execution time: 2.519 ms

Linnted 2o 10
Cines # of
swubscriptions

LATERAL and Multl-50

Limit (time=2.488 rows=10)
-> Sort (time=2.487 rows=10)
-> Nested Loop (time=2.339 rows=800)
-> Index Only Scan using pk on s

(time=0.042 rows=80)

-> Limit

(time=0.027 rows=10 loops=80)
-> Index Scan Ba s
using news_td 1000000 ¢ res
Planning time: ©.161 ms Faster
Execution time: 2.519 ms

Linnted 2o 10
Cines # of
swubscriptions

LATERAL In an Nutsnel

LATERAL is the "for each" loop of SQL
LATERAL plays well with outer joins
LATERAL is an optimization Super-Power

LATERAL handy to join table functions

LATERAL Avallabllity (5QL: 1999

®)) — 4P LO N @) — ™
S &8 8 8 8 8 & &
- N N N N N N
DB2 LUW
1 A O e
MySQL

U | T
- }11gR1© Oracle

)2 PostgreSQL
[

2005 SQL Server
I |
SQLite

' Undocumented. Requires setting trace event 22829.
" LATERAL is not supported as of SQL Server 2014 but [CROSS |OUTER] APPLY can be used for the same effect.

WLTH

(Common lable Expressions)

WITH Belore SQL 99

Nested queries are hard to read:

SELECT ..
FROM (SELECT ..
FROM t1l
JOIN (SELECT .. FROM ..
) a ON (..)
) b
JOIN (SELECT .. FROM ..
) ¢ ON (..)

WITH Belore SQL 99

Nested queries are hard to read:

SELECT ..
FROM (SELECT ..
FROM t1 UnderZ
JOIN (SELECT .. FROM .. 22
) a ON (..)
) b

JOIN (SELECT .. FROM ..
) ¢ ON (..)

WITH Belore SQL 99

Nested queries are hard to read:

SELECT ..
FROM (SELECT .. o, /iS5
FROM t1

JOIN (SELECT .. FROM ..

) a ON (..)
) b
JOIN (SELECT .. FROM ..
) ¢ ON (..)

WITH Belore SQL 99

Nested queries are hard to read:

SELECT ..
FROM (SELECT ..
FROM t1
JOIN (SELECT .. FROM ..
) a ON (..)
) b Ahis...
JOIN (SELECT .. FROM /7"
) ¢ ON (..)

WITH Belore SQL 99

Nested queries are hard to read:

' £1rst line makes Sense
SELECT {na//y Zhe r

FROM (SELECT ..
FROM t1l
JOIN (SELECT .. FROM ..
) a ON (..)
) b
JOIN (SELECT .. FROM ..
) ¢ ON (..)

WITH Since 5QL 99

CTEs are statement-scoped views:

WITH
a (cl, c2, c3)
AS (SELECT c1, c2, c3 FROM ..),

WITH Since 5QL 99

CTEs are statement-scoped views:
Keya)ora/

a (cl, c2, c3)
AS (SELECT c1, c2, c3 FROM ..),

WITH Since 5QL 99

CTEs are statement-scoped views:
A/a/y/e of C7”£ and (/7@/‘@

WITH oii/onaﬁ column nares
AS (SEL cl, c2, c3 FROM ..),

WITH Since 5QL 99

CTEs are statement-scoped views:

WITH

) (Cl Deﬂ‘n/‘Z/‘On

WITH Since 5QL 99

CTEs are statement-scoped views:

WITH Trntroduces
d (Cl: C2, C3) QI?OZ‘/’IeI‘ Cfg
AS (SELECT c1, c2, c3 FROM ..J})
Dont re peal

‘aizzﬁ%/

WITH Since 5QL 99

CTEs are statement-scoped views:

WITH
a (cl, c2, c3)
AS (SELECT c1, c2, c3 FROM ..),

b (c4, ..)
AS (SELECT c4, ..
FROM t1
JOIN a
ON (..)

)

WITH Since 5QL 99

CTEs are statement-scoped views:

WITH

(a)(c1l, c2, c3)
ECT c1, c2, c3 FROM ..),

AS (SELECT\c4, ..

FROM Y1 A%, refer Zo
10INQ) previows CTES
ON (.0)

)

WITH Since 5QL 99

b (c4, ..)
AS (SELECT c4, ..
FROM t1
JOIN a
ON (..)

)

c (..)
AS (SELECT .. FROM ..)

SELECT ..
FROM b JOIN c ON (..)

WITH Since 5QL 99

b (c4, ..)
AS (SELECT c4, ..
FROM t1
JOIN a
ON (..)

) Third CTE
AS (SELECT .. FROM ..)

SELECT ..
FROM b JOIN c ON (..)

WITH Since 5QL 99

b (c4, ..)
AS (SELECT c4, ..
FROM t1
JOIN a
ON (..)

)
c (..)
AS (SELECT .. FROM .0 Yo commal

SELECT ..
FROM b JOIN c ON (..)

WITH Since 5QL 99

b (c4, ..)
AS (SELECT c4, ..
FROM t1

JOIN a
ON (..)

)

c (..)
AS (SEL

SELECT ..
FROM b JOIN c ON (..)

Mai n guery

WITH Since 5QL 99

WITH
a (cl, c2, c3)
AS (SELECT cl1, c2, c3 FROM ..),

b (c4, ..)
AS (SELECT c4, .. A
FROM t1 e n
JOIN a K dot
ON (..) to?
) >

c (..)
AS (SELECT .. FROM ..)

SELECT ..
FROM b JOIN c ON (..)

WITH In an Nutshel

WITH are the "private methods" of SQL
WITH views can be referred to multiple times
WITH allows chaining instead of nesting

WITH Is allowed where SELECT Is allowed

INSERT INTO tbl
WITH ... SELECT ...

WITH PostgreSCQL Farticulanties

In PostgreSQL WITH views are more like
materialized views:

WITH cte AS
(SELECT *
FROM news)
SELECT *
FROM cte
WHERE topic=1

WITH PostgreSCQL Farticulanties

In PostgreSQL WITH views are more like
materialized views:

WITH cte AS CTE Scan on cte
(SELECT * (rows=6370)

FROM news) Filter: topic =1
SELECT * CTE cte

FROM cte -> Seqg Scan on news

WHERE topic=1 (rows=10000001)

WITH PostgreSCQL Farticulanties

In PostgreSQL WITH views are more like
materialized views:

WITH cte AS CTE Scan on cte
(SELECT * (rows=6370)

FROM news) Filter: topic =1
SELECT * CTE cte

FROM cte -> Seg Scan on news

WHERE topic=1 (rows=10000001)

WITH PostgreSCQL Farticulanties

In Postgre
materialize

WITH cte AS
(SELECT *
FROM news)
SELECT *
FROM cte
WHERE topic=1

C7TE
doesnr 'Z‘
,énow déo&(f
the owler
£i/ler

aWsS are more like

CTE Scan on cte

(rows=6370)

Filter: topic =1
CTE cte

-> Seq Scan on news
(rows=10000001)

WITH PostgreSCQL Farticulanties

Normal views and inline-views support
‘predicate pushdown':

SELECT *
FROM (
SELECT *
FROM news

) n
WHERE topic=1;

WITH PostgreSCQL Farticulanties

Normal views and inline-views support
‘predicate pushdown':

SELECT * Bitmap Heap Scan
FROM (on news (rows=6370)
SELECT * ->Bitmap Index Scan

FROM news on idx (rows=6370)
) n Cond: topic=1

WHERE topic=1;

WITH PostgreSCQL Farticulanties

PostgreSQL 9.1+ allows INSERT, UPDATE
and DELETE within WITH:

WITH deleted rows AS (
DELETE FROM source
RETURNING *

)

INSERT INTO destination

SELECT * FROM deleted rows;

WITH Availability (5QL99)

1999
2001
2003
2005
2007
2009
2011
2013

DB2 LUW
MySQL
Oracle
PostgreSQL
SQL Server
SQLite

°'Only allowed at the very begin of a statement. E.g. WITH...INSERT...SELECT.
"' Only for top-level SELECT statements

WLITH RECURSIVE

(Common lable Expressions)

WITH RECURSIVE Before SQL:99

WITH RECURSIVE Before SQL:99

(This page is intentionally left blank)

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE cte (n)
AS (SELECT 1
UNION ALL
SELECT n+1
FROM cte
WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to

themselves in the second leg of a UNION [ALL]:
Keywora/

WITH cte (n)
AS (SELECT 1

UNION ALL
SELECT n+1
FROM cte
WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

s
(1/amn/'
WITH RECURSIVE cte @Moana/aiory here

AS (SELECT 1
UNION ALL
SELECT n+1
FROM cte
WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE cte (n)
AS ?@ercaied £irst
UNION ALL
SELECT n+1
FROM cte
WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

AS (SELECT(1)

UNION ALL
SELECT n+1
FROM cte
WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1

UNION ALL .
su
SELECT n+1// K2 ble
ViS!
FROM(cte)/ %, ice

SELECT * FROM(cte)

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1
UNION ALL

SELECT n+1

SELECT * FROM(cte)

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to

themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1
UNION ALL

SELECT n+1

WHERE n <y/3)
SELECT * FROM(cte)

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE cte (n)
AS (SELECT 1
UNION ALL
ELECT n+1

ON ~
FROM cte » NI 1
/
WHERE n < 3} ', 4od

SELECT * FROM cte;

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

Kesult
WITH RECURSIVE Cte (n) Sen? ZAhere
AS (SELECT 1 aga n
UNION ALL n
SELECT (0+1
FROM cte 1

WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1
UNION

SELECT (n+1

WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1

WHERE n < 3)
SELECT * FROM cte;

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1

UNION Iz‘ '5 a N
SELECT @+1Y /oop !
FROM @
WHERE n < 3) 2

SELECT * FROM cte;

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1

UNION T4's a

N
1
WHERE n < 3) 2
SELECT * FROM cte; 3

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE
AS (SELECT 1
UNION

SELECT * FROM cte;

WITH RECURSIVE Since 5O 99

Recursive common table expressions may refer to
themselves in the second leg of a UNION [ALL]:

WITH RECURSIVE cte (n)
AS (SELECT 1

UNION ALL X n

n= , - -

SELECT n+1 Joesn'T)
FROM cte watc A

WHEREGh < 3) 2

* . Loop 3
SELECT * FROM cte; zerxﬁmdfeé

WITH RECURSIVE Use Cases

e Row generators (previous example)
(generate series() is proprietary)

® Processing graphs
(don't forget the cycle detection!)

e Generally said: Loops that...
» ... pass data to the next iteration
» ... need a "dynamic” abort condition

WITH RECURSIVE In a Nutshel

WITH RECURSIVE is the while of SQL

WITH RECURSIVE "supports” infinite loops
(not in SQL Server where MAXRECURSION is limited to 32767)

Except PostgreSQL, databases generally
don't require the RECURSIVE keyword

WITH RECURSIVE Avalabiity

1999
2001
2003
2005
2007
2009
2011
2013

DB2 LUW
MySQL
Oracle
PostgreSQL
SQL Server
SQLite

“ Feature request #16244 from 2006-01-06 .
" Default limit of 100 iterations. OPTION (MAXRECURSION n) can push this up to 32767
“ Only for top-level SELECT statements

SQL 2003

FILTER

FILTER Belore SQL 2003

PIvot table: Years on the Y asis, Month on X axis:

SELECT YEAR,

SUM(CASE WHEN MONTH = 1
THEN sales ELSE © END) JAN,

SUM(CASE WHEN MONTH = 2
THEN sales ELSE © END) FEB,..

FROM sale data
GROUP BY YEAR

FILTER Since 5QL 2003

SQL:2003 has FILTER:

SELECT YEAR,
SUM(sales) FILTER (WHERE MONTH
SUM(sales) FILTER (WHERE MONTH

1) JAN,
2) FEB,

FROM sale data
GROUP BY YEAR;

FILTER Avallaoiity (5QL 2003,

1999
2001
2003

005
2007
2009
2011
2013

Q\

DB2 LUW
MySQL
Oracle
PostgreSQL
SQL Server
SQLite

OVER

and

PARTITION BY

OVER Belore SQL 2003

Show percentage of department salary:

WITH total salary by department
AS (SELECT dep, SUM(salary) total
FROM emp
GROUP BY dep)
SELECT dep, emp id, salary,
salary/ts.total*100 "% of dep”
FROM emp
JOIN total salary by department ts
ON (emp.dep = ts.dep)

OVER Belore SQL 2003

Show percentage of department salary:
WITH total salary by department

OVER Belore SQL 2003

Show percentage of department salary:

WITH total salary by department
AS (SELECT dep, SUM(salary) total
FROM emp
GROUP BY dep)

OVER Belore SQL 2003

Show percentage of department salary:

WITH total salary by department
AS (SELECT dep, SUM(salary) total
FROM emp
GROUP BY dep)
SELECT dep, emp id, salary,
salary/ts.total*100 "% of dep”
FROM emp
JOIN total salary by department ts
ON (emp.dep = ts.dep)

Show percentage of department salary:

WITH total salary by department
AS (SELECT dep, SUM(salary) total
FROM emp
GROUP BY dep)
SELECT dep, emp id, salary,
salary/ts.total*100 "% of dep”
FROM emp
JOIN total salary by department ts
ON (emp.dep = ts.dep)

WITH total salary_by_department
AS (S “ ary) total

FROM emp
GROUP BY dep)
SELECT dep, emp id, salary,
salary/ts.total*100 "% of dep”
FROM emp
JOIN total salary by department ts
ON (emp.dep = ts.dep)

WITH total salary_by_department
AS (S “ ary) total

FROM emp
GROUP BY dep)
SELECT dep, emp id, salary,
salary/ts.total*100 "% of dep”

FROM emp
JOIN total_salary_by_department<::>
ON (emp.dep = ts.dep)

Show percentage of department salary:

WITH total salary by department
AS (SELECT dep, SUM(salary) total
FROM emp
GROUP BY dep)
SELECT dep, emp id, salary,
salary/ts.total*100 "% of dep”
FROM emp
JOIN total salary by department ts
ON (emp.dep = ts.dep)

a ~TTe

— 2000
o d T falRE 1222

AS (SELECT dep, SUM(salary) total
FROM emp
GROUP BY dep)

SELECT dep, emp id, salary,
salary/ts.total*100 "% of dep”

FROM emp
JOIN total salary_by_department ts
QN —(empde . ts dep)

OVER Belore SQL 2003

Show percentage of department salary:

WITH total salary by department
AS (SELECT dep, SUM(salary) total
FROM emp
GROUP BY dep)
SELECT dep, emp id, salary,
salary/ts.total*100 "% of dep”
FROM emp
JOIN total salary by department ts
ON (emp.dep = ts.dep)

OVER Belore SQL 2003

GROUP BY =

DISTINCT

|
Aggregates

OVER &Since 5012003

Suild aggregates without GROUP BY:

SELECT dep, emp _id, salary,
salary/SUM(salary)
OVER(PARTITION BY dep)
* 100 "% of dep”
FROM emp

OVER How It Works

SELECT dep,
salary

FROM emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

SELECT dep,
salary,

FROM emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

SELECT dep,
salary,
SUM(salary)

FROM emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

SELECT dep,
salary,
SUM(salary)
OVER ()

FROM emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

SELECT dep,
salary,
SUM(salary)
OVER ()

FROM emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

SELECT dep,
salary,
SUM(salary)
OVER ()

FROM emp;

dep |salary
1 1000 | 6000
22 | 1000 | 6000
22 | 1000 | 6000
333 | 1000 | 6000
333 | 1000 | 6000
333 | 1000 | 6000

OVER How It Works

SELECT dep,
salary,
SUM(salary)

FROM emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

I dep,
salary,
SUM(salary)

M1 emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

I dep,
salary,
SUM(salary)
OVER(PARTITION BY dep)
M1 emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

I dep,
salary,
SUM(salary)
OVER(PARTITION BY dep)
M1 emp;

dep |salary
1 1000
22 | 1000
22 | 1000
333 | 1000
333 | 1000
333 | 1000

OVER How It Works

I dep,
salary,
SUM(salary)
OVER(PARTITION BY dep)
M1 emp;

dep |salary| ts
1 1000 | 1000
22 | 1000 | 2000
22 | 1000 | 2000
333 | 1000 | 3000
333 | 1000 | 3000
333 | 1000 | 3000

OVER ina Nutshel

OVER may follow any aggregate function

OVER defines which rows are visible at each row
(it does not limit the result iIn any way)

OVER () makes all rows visible at every row

OVER(PARTITION BY X) segregates like GROUP BY

OVER

and

ORDER BY

OVER Belore SQL 2003

Calculating a running total:

SELECT txid, value,

FROM transactions txl
WHERE acnt = ?
ORDER BY txid

OVER Belore SQL 2003

Calculating a running total:

SELECT txid, value,
(SELECT SUM(value)
FROM transactions tx2
WHERE acnt = ?
AND tx2.txid <= tx1l.txid) bal
FROM transactions txl
WHERE acnt = ?
ORDER BY txaid

OVER Belore SQL 2003

Calculating a running total:

SELECT txid, value,
(SELECT SUM(value)
FROM transactions tx2

WHERE
AND tx2.txid <= tx1l.txid) bal

FROM transactions txl

WHERE
ORDER BY Txid

OVER Belore SQL 2003

Calculating a running total:

SELECT txid, value,
(SELECT SUM(value)
FROM transactions tx2
WHERE acnt = ?
AND tx2.txid <= tx1l.txid) bal
FROM transactions txl
WHERE acnt = ?
ORDER BY txaid

OVER Belore SQL 2003

Calculating a running total:

SELECT txid, value,
(SELECT SUM(value)
FROM transactions tx2
WHERE acnt =2

FROM transactions tTX

WHERE acnt = ?

ORDER BY txid

OVER Belore SQL 2003

Calculating a running total:

SELECT txid, value,
(SELECT SUM(value)
FROM transactions tx2
WHERE acnt = ?
AND tx2.txid <= tx1l.txid) bal
FROM transactions txl
WHERE acnt = ?
ORDER BY txaid

OVER Belore SQL 2003

Before SQL:2003 running totals were awkward:

» Requires a scalar sub-select or self-join

» Poor maintainabllity (reparative clauses)

» Poor performance

OVER Belore SQL 2003

Before SQL:2003 running totals were awkward:

» Requires a scalar sub-select or self-join

» Poor maintainabllity (reparative clauses)

» Poor performance

The only real answer was:

OVER Belore SQL 2003

Before SQL:2003 running totals were awkward:

» Requires a scalar sub-select or self-join

» Poor maintainabllity (reparative clauses)

» Poor performance

The only real answer was:

Do 1t In the application

OVER &Since 5012003

With SQL:2003 you can narrow the window:

SELECT txid, value,
SUM(value)
OVER(ORDER BY txid
ROWS
BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW) bal
FROM transactions tx1l
WHERE acnt = ?
ORDER BY txid

OVER &Since 5012003

With OVER (ORDER BY ..) anew type of
functions makes sense:

» ROW_NUMBER

» Ranking functions:
RANK, DENSE RANK, PERCENT RANK,
CUME DIST

OVER Avalapility (5QL 2003

O T OO 10O N~ O ~ O
o O O O O O ™ 1
o O O O O O O O
~ N AN AN AN AN AN

DB2 LUW
MySQL
Oracle
PostgreSQL
SQL Server
SQLite

° Feature request #35893 from 2008-04-08

WLITHIN GROUP

WITHIN GROUP Before SQL: 2003

Getting the median:

SELECT
FROM
JOIN

ON

GROUP
HAVING

dl.val
data dl
data d2
(dl.val < d2.val
OR (dl.val=d2.val AND dl.id<d2.id))
BY dl.val
count(*) =
(SELECT FLOOR(COUNT(*)/2)
FROM data)

WITHIN GROUP since S0 2003

SQL:2003 introduced ordered-set functions...

SELECT PERCENTILE DISC(0.5)

WITHIN GROUP (ORDER BY val)
FROM data

...and hypothetical-set functions to say which rank
a hypothetical row would have:

SELECT RANK(123)

WITHIN GROUP (ORDER BY val)
FROM data

WITHIN GROUP since S0 2003

SQL:2003 introduced ordered-set functions...
Medianr

SELECT PERCENTILE_DISC
WITHIN GROUP (ORDER BY val)

FROM data

...and hypothetical-set functions to say which rank
a hypothetical row would have:

SELECT RANK(123)

WITHIN GROUP (ORDER BY val)
FROM data

WITHIN GROUP since S0 2003

SQL:2003 introduced ordered-set functions...
Mediar
SELECT PERCENTILE DISC

WITHIN GROUP (ORDER BY val)

FROM data /J/wch val/cte?

...and hypothetical-set functions to say which rank
a hypothetical row would have:

SELECT RANK(123)

WITHIN GROUP (ORDER BY val)
FROM data

WITHIN GROUP since S0 2003

SQL:2003 introduced ordered-set functions...

SELECT PERCENTILE DISC(0.5)

WITHIN GROUP (ORDER BY val)
FROM data

...and hypothetical-set functions to say which rank
a hypothetical row would have:

SELECT RANK(123)

WITHIN GROUP (ORDER BY val)
FROM data

WITHIN GROUP since S0 2003

SQL:2003 introduced ordered-set functions...

SELECT PERCENTILE DISC(0.5)

WITHIN GROUP (ORDER BY val)
FROM data

...and hypothetical-set functions to say which rank
a hypothetical row would have:

SELECT RANK(123)

WITHIN GROUP (ORDER BY val)
FROM data

WITHIN GROUP Availability

1999
2001
2003

005
2007
2009
2011
2013

Q\

DB2 LUW
MySQL
Oracle
PostgreSQL
SQL Server
SQLite

SQL 2008

OVER

OVER Before SQL 2008

Calculate the difference to a previous row:

OVER Before SQL 2008

Calculate the difference to a previous row:

WITH numbered data AS (
SELECT *,
ROW _NUMBER() OVER(ORDER BY Xx) rn
FROM data)

OVER Before SQL 2008

Calculate the difference to a previous row:

WITH numbered data AS (

SELECT *,
ROW NUMBER() OVER(ORDER BY Xx) rn

FROM data)
SELECT cur.*, cur.balance-prev.balance
FROM humbered data cur
LEFT JOIN numbered data prev
ON (cur.rn = prev.rn-1)

OVER &Since 5QL 2008

SQL:2008 can access other rows directly:

OVER &Since 5QL 2008

SQL:2008 can access other rows directly:

SELECT *, balance - LAG(balance)
OVER(ORDER BY x)
FROM data

OVER &Since 5QL 2008

SQL:2008 can access other rows directly:

SELECT *, balance - LAG(balance)
OVER(ORDER BY x)
FROM data

Available functions:
LEAD / LAG

FIRST VALUE / LAST VALUE
NTH VALUE(col, n) FROM FIRST/LAST
RESPECT/IGNORE NULLS

OVER &Since 5QL 2008

SQL:2008 can access other rows directly:

SELECT *, balance - LAG(balance)
OVER(ORDER BY x)

FROM data
d
Available functions: "/ oL 54{2 7 Orzel.
LEAD / LAG y Posty ol
(as of 9 4

FIRST VALUE / LAST VA
NTH VALUE(col,

FROM FIRST/LAST
RESPECT/IGNORE NULLS

OVER Avallapility (5QL 2008

PostgreSQL
20120SQL Server
SQLite

°"No NTH_VALUE as of DB2 LUW 10.5

" No NTH_VALUE and IGNORE NULLS until Oracle release 11gR2

2 No support for IGNORE NULLS and FROM LAST as of PostgreSQL 9.4
®'No NTH_VALUE as of SQL Server 2014

FETCH FIRST

FETCH FIRST Belore SQL 2008

Limit the number of selected rows:

SELECT *
FROM (SELECT *,
ROW _NUMBER() OVER(ORDER BY Xx) rn
FROM data) numbered data
WHERE rn <=10

QL2008

FETCH F
poéZ‘ﬂ/*eS@[.

does rnot opf IPNZe

Limit th
it e ZAMS/prqy@vﬁ//

SELECT *
FROM (SELECT 74
ROW_NUMAER() OVER(ORDER BY Xx) rn
FROM data) nmumbered data
WHERE rn <=10

FETCH FIRST Belore SQL 2008

Limit the number of seleatad rows:
SELECT * Dapnnd |
FROM (SF Let's take
N L TMTT)ER BY X) rn
FROM de (or 7OP)

WHERE rn <

FETCH FIRST Since sQL: 2008

SQL:2008 has FETCH FRIST n ROWS ONLY:

SELECT *
FROM data
ORDER BY x
FETCH FIRST 10 ROWS ONLY

FETCH FIRST Avallanilty

999
2003
2009
2011
2013

2001
2005
2007

:

SN ——— D52 LW

3.19.30 (5.7.5) MySQL
Oracle
o PostgreSQL
|20|05|[21| o SQL Server
2.1.0" (3.8.8) SQLite

I I I I I
° Earliest mention of LIMIT. Probably inherited from mSQL

" Functionality available using LIMIT
“I'SELECT TOP n * FROM...

6.5""

SQL 2017

OFFSET

OFFSET Before SQL 20T

Skip 10 rows, then deliver only the next 10:

SELECT *
FROM (SELECT *,
ROW _NUMBER() OVER(ORDER BY Xx) rn
FROM data
FETCH FIRST 20 ROWS ONLY
) numbered data
WHERE rn > 10

OFFSET Before SQL 20T

Skip 10 rows, then deliver only the next 10:

SELECT *
FROM (SELECT *,
ROW _NUMBER() OVER(ORDER BY Xx) rn
FROM _dz=

FETCH FIRST 20 ROWS ONLY

) numbered date

WHERE

OFFSET Since Q20T

SQL:2011 introduced OFFSET, unfortunately:

SELECT *
FROM data
ORDER BY x
OFFSET 10 ROWS
FETCH NEXT 10 ROWS ONLY

OFFSET Is =VIL

http://use-the-index-luke.com/no-offset

http://use-the-index-luke.com/no-offset
http://use-the-index-luke.com/no-offset

OFFSET Is =VIL

http://use-the-index-luke.com/no-offset

http://use-the-index-luke.com/no-offset
http://use-the-index-luke.com/no-offset

OFFSET Avallapility (5QL:2017)

'DB2 LUW
MySQL
Oracle
PostgreSQL
SQL Server
SQLite

°' Requires enabling the MySQL compat|b|l|ty vector: db2set DB2_COMPATIBILITY_ VECTOR=MYS
" LIMIT [offset,] limit: "With this it's easy to do a poor man's next page/previous page WWW application."
“I The release notes say "Added PostgreSQL compatible LIMIT syntax"

WITHOUT OVERLAPS

WITHOUT OVERLAPS Reiore SQL 2077

Prior SQL:2011 it was not possible to define
constraints that avoid overlapping periods.

Workarounds are possible, id | begin | end
out no fun: CREATE TRIGGER ‘ '

WITHOUT OVERLAPS Since QL2011

SQL:2011 introduced temporal and bi-temporal
features —e.qg., for constraints:

PRIMARY KEY (id, period WITHOUT OVERLAPS)

WITHOUT OVERLAPS Since QL2011

SQL:2011 introduced temporal and bi-temporal
features —e.qg., for constraints:

PRIMARY KEY (id, period WITHOUT OVERLAPS)

PostgreSQL 9.2 introduced range types and
"exclusive constraints” which can accomplish the
same effect:

EXCLUDE USING gist
(id WITH =, period WITH &%&)

Temporal/Bi-Temporal SQL

SQL:2011 goes far beyond WITHOUT OVERLAPS.

Please read these papers to get the idea:

Temporal features in SQL:2011

http://cs.ulb.ac.be/public/ media/teaching/infon415/tempfeaturessqgl2011.pdf

What's new in SQL:20117?

http://www.sigmod.org/publications/sigmod-record/1203/pdfs/10.industry.zemke. pdf

http://cs.ulb.ac.be/public/_media/teaching/infoh415/tempfeaturessql2011.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh415/tempfeaturessql2011.pdf
http://www.sigmod.org/publications/sigmod-record/1203/pdfs/10.industry.zemke.pdf
http://www.sigmod.org/publications/sigmod-record/1203/pdfs/10.industry.zemke.pdf

WITHOUT OVERLAPS Avalabiity

1999
2003
2009
2011
2013

2001
2005
2007

DB2 LUW
MySQL
Oracle
PostgreSQL
SQL Server
SQLite

' Minor differences: PERIOD without FOR; period name must be BUSINESS_TIME
"I'Oracle 12c has partial temporal support, but no direct equivalent of WITHOUT OVERLAPS
? Functionality available using EXCLUDE constraints

Apout Markus VVinano

Tuning developers for SOL
high SQL performance 5o on v ANCE

- . I=XPILAINIEED
Training & tuning:

ENGLISH EDITION

winand.at

Author of:
SQL Performance Explained

&.:% '... 7 A B ._.' - Ty -i{~ .';. :; .>-.~ '. '4"‘k 4 ':. ‘..,'/: _.’ _l' ':’..:: ‘
Geek blO : EVERYTHING DEVELOPERS NEED TO KNOW ABOUT SQL PERFORMANCE
\% g.
iIndex-luk =
use-the-index-luke.com .

http://use-the-index-luke.com
http://use-the-index-luke.com

Apout Markus VVinano

use-the-index-luke.com

http://use-the-index-luke.com
http://use-the-index-luke.com

