Voting PostgreSQL

Magnus Hagander

A short story...

- - yink square
‘ "Just FYI, you have $[x] left on the bar tab.” "Well, @magnushagander is on the

way."

So | got there late...

...but why?

Well, that's the story

Let's start somewhere far away

o
¥

Norway

Norway

I
=R

e H

i

("; Trondelag
o

hMare og
Ramsdaly, g

"“‘"‘"{9'-"'1:
Bargen -} - r
K al
] i
Hardalans +i B

e

Ll
&
Vests
Agder

Countics
Old New

O Akarshus Akershus

1 Bratsberg Telemark

1 Buskerud Buslamnd

B Finnmarken Flnfuinark

B Hedermarken Hadmark

B Jarksbeig Vesifald

1 Kristlans Oppland

] Listerog Mandal Vegt-Agder

B MNordre Bopgenshus Sognof Fjordane
= Nordre Trondhjem Nord-Trendelag
=1 Madanas Aust-Rgder

2 Mordland Mardland

= Romsdal Mpre og Romsdal
= Sgndre Bergenshius Hordaland

[Sgndre Trondhjem Spr-Trendelag
3 Smaalanenas Esifold

B Stavanges Regaland

] Tramdsg Trams

Municipal Counties

B Kristiania Dsla
N Bergen Bargen

Voting order

* Some pre-voting

* Majority done on election day
- Opens 8AM, closes 9PM
- Paper ballots
- Counted locally

- Scanned centrally
- Incremental results posted from PM

Election Administration System

e Live
- Who can vote?
- Who did vote?
e Batch
- Scanned results
e Output

- Who is winning?

Election Administration System

» Locally developed application
- Originally inherited legacy...

* WildFly clusters for different works
- Almost entirely Hibernate

» Single PostgreSQL backend cluster

- 9.3 on RHEL
- Bare metal hardware, SSD

. Primary : © Secondary °
. datacenter . datacenter

Primary : : Standby :

: Remote

: datacenter
Standby : :

; : Standby

Everybody worried about perf

 Some experiences with previous solutions

* No full-scale performance tests
— Difficult to build proper tests

In general worked very well

* Mostly 15-20% load
- 48 core box, 32Gb RAM
* \Very fast response times

e Bottlenecks were elsewhere

- (and there were a number)

Two noteworthy events

Unintentional serializing

* Scanning interface used “homemade
sequences’

* Trigger that updated individual row In table

* Not caught in testing

- Not enough concurrency tested
— Actual scanning application also fairly slow

Unintentional serializing

* Tracked down with pg locks
* Replaced with SEQUENCE

Missing Indexes

* One very central table

* Used very central late in the process

- Few 1000s queries / second
- Simple JOINs

* Performed very well
- Until it grew

Missing Indexes

CPU usage - from Mon Sep 14 18:41:11 2815 to Mon Sep 14 23:11:11 2015

Missing Indexes

* Noticed by general system load growing
* Tracked down with pg_stat statements
* Fixed with CREATE INDEX CONCURRENTLY

Missing Indexes

Conclusion

 Democracy through PostgreSQL!

