
Citus MX
Write-scalable, distributed PostgreSQL tables

Marco Slot
marco@citusdata.com

Overview
This talk:

● Why scale out?
● What is Citus?
● When to use Citus?
● Citus replication models
● Citus MX: Scaling out writes
● Next steps

PostgreSQL growing pains
At a certain scale, many things start going wrong:

1. Working set and indexes no longer fit into memory
2. CPU is at 100% for part of the day
3. Disk latency starts to spike
4. Replication/archival cannot keep up
5. Table bloat grows out of control
6. Ingestion gets bottlenecked on index maintenance, disk throughput
7. Things fail
8. …

Why scale out?
When you run into scaling problems do you:

1. Rearchitect your application every week?
2. Buy bigger hardware every week?
3. Start from scratch and use NoSQL?
4. Scale out PostgreSQL?

Scaling out allows you to make performance problems go away by simply adding
more servers, so

You can focus on adding features and growing your business.

What is Citus?
Citus is an extension that adds distributed tables to PostgreSQL.

Distributed tables are transparently sharded across other PostgreSQL servers to
horizontally scale out memory, storage and CPU.

Available as open source software:
https://github.com/citusdata/citus

Can get started in minutes using Citus Cloud:
https://www.citusdata.com/product/cloud

https://github.com/citusdata/citus
https://github.com/citusdata/citus
https://www.citusdata.com/product/cloud
https://www.citusdata.com/product/cloud

CREATE EXTENSION citus;

Add nodes:

 SELECT master_add_node('10.0.53', 5432);

 SELECT master_add_node('10.1.54', 5432);

Create distributed table:

 CREATE TABLE events (tenant_id int, ...);

 SELECT create_distributed_table('events', 'tenant_id');

Events is now distributed across shards on the nodes.

Citus Architecture

events

Citus node 1
(PostgreSQL +
Citus extension)

..

.. ..
..

Citus coordinator
(PostgreSQL +
Citus extension)

Distributed table
(metadata)

E1 E4

Citus node 2

..

..

E2 ..

Citus node N

..

..

E3 ..

…

Regular tables
(1 shard =
1 Postgres table)

Single-node queries: Full SQL push-down

events

..

.. ..
..

e1 e4 ..

..

e2

..

e3 ..

…

WITH special_events AS (…)
SELECT row_number() …
FROM events
WHERE tenant_id = 2 …

WITH special_events AS (…)
SELECT row_number() …
FROM E2
WHERE tenant_id = 2 …

Single-node writes: Transaction push-down

events

..

.. ..
..

e1 e4 e2 ..

p8

.. ..

..

e3 ..

…

BEGIN;
INSERT INTO events …
UPDATE pages …
COMMIT;

BEGIN;
INSERT INTO events_2 …
UPDATE pages_8 …
COMMIT;

pages

Multi-node queries: Parallel SQL subset

events

..

.. ..
..

e1 e4 ..

..

e2

..

e3 ..

…

SELECT avg(latency) …
FROM events;

SELECT sum(latency), count(latency)
FROM e3;SELECT sum(latency), count(latency)

FROM e1;

Multi-node writes: Parallel DDL, COPY, … in 2PC

events

..

.. ..
..

e1 e4 ..

..

e2

..

e3 ..

…

ALTER TABLE events …

BEGIN;
ALTER TABLE events_2 …
PREPARE TRANSACTION 'x';
COMMIT TRANSACTION 'x';

BEGIN;
ALTER TABLE events_3 …
PREPARE TRANSACTION 'y';
COMMIT TRANSACTION 'y';

When to use Citus for scaling out?
Citus is suitable for scaling out several broad use-cases:

● Multi-tenant (SaaS) applications - Shard by tenant
Citus co-locates data, routes queries, offers full SQL, ACID transactions

● Real-time analytics applications - Shard by entity
Citus parallelises analytical queries, COPY, INSERT..SELECT

● Key-value storage - Shard by key
Citus routes queries, parallelises secondary index queries

Multi-tenant applications - Shard by tenant
In a SaaS, almost all queries and transaction concern only one tenant.

Multi-tenancy using Citus:

● Add a tenant_id column to all tables
● Distribute all tables by tenant_id - Citus ensures data co-location
● Include WHERE tenant_id = $1 in queries
● Include tenant_id in joins and foreign keys

Citus offers full SQL for selects, ACID transactions, parallel DDL, foreign keys.

Can easily convert existing applications (e.g. using activerecord-multi-tenant).

Real-time analytics applications - Shard by entity
High volume event stream with real-time analytical dashboard using Citus:

● Distribute event table(s) by entity_id (e.g. pages)
● Create reference tables for common attributes (e.g. users)
● Bulk load event data using parallel COPY
● Create roll-ups using parallel INSERT..SELECT
● Run parallel SELECT on the roll-ups/raw data

Citus offers tools for parallelising and scaling out the whole data pipeline.

Mainly suitable for new applications.

Key-value storage - Shard by key
Key-value storage using Citus (NoSQL++):

● Distribute tables by key
● Include WHERE key = $1 in queries
● Use JSONB for unstructured data

Citus offers NoSQL functionality + parallel “secondary” index queries.

Could replace NoSQL (ORM) databases.

When not to use Citus?
Citus is not suitable for these use-cases:

● Ad-hoc reporting queries (Data warehouse)
Not all SQL queries across shards are supported

● Normalized data model
ACID transactions across shards are not supported

Citus Replication
Citus supports two replication models:

1. Replicate shards through statement-based replication
2. Replicate nodes through streaming replication

Statement-based replication in Citus
Replicate shards by sending DML to each node.

Single coordinator necessary for locking and tracking shard health.

coordinator

events

events_1 events_1’

events_2

events_2’

events_3 events_4

events_3’

events_4’

UPDATE events SET …
WHERE tenant_id = 5

UPDATE events_1 SET …

Streaming replication in Citus (Cloud)
Replicate nodes using streaming replication and auto failover.

No locking and inactive shards: Single coordinator is no longer necessary.

coordinator

events

events_1 events_1’

events_3’

events_2

events_4 events_4’

events_2’

events_3

UPDATE events SET …
WHERE tenant_id = 5

UPDATE events_1 SET …

Hot standby Hot standby

Citus MX Architecture

coordinator

events

events_1 events_1’

events_3’

events_2

events_4 events_4’

events_2’

events_3

UPDATE events SET …

UPDATE events_1 SET …

events events’ events events’

Replicate distributed tables and metadata to all nodes.

Client

DNS (round-robin)

The Citus MX project
Citus distributes tables across many servers to scale out queries.

Citus MX replicates distributed tables across many servers to scale out writes.

1. Automatically synchronize metadata to all nodes.
2. Mitigate inter-node connection explosion.
3. Become competitive with NoSQL on write-scalability.
4. Merge back into Citus.

In progress:

5. Streaming replication + auto failover for on-premises.

coordinator

events

events_1 events_2

events_4events_3

events events

Metadata propagation (2PC)
Metadata changes and DDL are propagated via
coordinator through 2PC.

 2) BEGIN;
 INSERT INTO pg_dist_node …
 …
 PREPARE TRANSACTION 'x';
 COMMIT TRANSACTION 'x';

Add new node

events

1) BEGIN;
 Create tables
 Create metadata
 COMMIT;

2PC auto-recovery
Pre-commit on coordinator:

Write [node ID, prepared transaction name] records to pg_dist_transaction

SELECT recover_prepared_transactions():

Fetches prepared transactions from worker
If there is a corresponding record in pg_dist_transaction, commit
If there is no corresponding record in pg_dist_transaction, roll back

Shard copy

coordinator

events

events_1 events_2

events events

move_shard

events_4events_3

events

In a 2PC:
1) SELECT lock_shard_metadata(..)
…
3) Update shard placement metadata
4) (on source) DROP old shard placement

events_4
2) Sub-transaction:
SELECT copy_shard(…)

Quadratic Connection explosion
Citus requires many sessions to get high throughput under latency, but MX makes
it quadratic...

e1 e1

postgres

e1

INSERT INTO events ... INSERT INTO events ... INSERT INTO events ...

events

e1

events

e2

events

e3

Pgbouncer pooling
Every node keeps a pool of 128/#nodes+1 connections to every other node.

events

pgb0

pg
b1

pg
b3

e1

pg
b2

e1

events

pgb0

pg
b1

pg
b3

e1

pg
b2

e2

postgres
events

pgb0

pg
b1

pg
b3

e1

pg
b2

e3

INSERT INTO events ...

INSERT INTO e2 ...

YCSB Benchmark

Compared to Datastax benchmark:

YCSB Benchmark

Compared to single-node PostgreSQL:

~7 million rows/sec with COPY

Network limits

Bisection bandwidth ultimately becomes a bottleneck:

router

router

router

Citus
Node

Citus
Node

Citus
Node

Citus
Node

10Gbps

50% of incoming data
needs to be stored in
other half.

Citus
Node

Citus
Node

http://www.youtube.com/watch?v=JAPl4eNFxk4

Next steps

Ongoing work:

● Citus auto failover solution for on-premises

Possible future steps:

● Benchmark at 1M writes/sec
● Kubernetes?
● Integrate pgbouncer into Citus?
● pg_paxos for coordinator?

Questions?
marco@citusdata.com

In progress: Auto failover on-premises MVP

coordinator

monitor

events

events_1 events_1’

events_3’

events_2

events_4 events_4’

events_2’

events_3

events events’ events events’

Failover managed by an extension (+ keeper program).

HA keeper HA keeper HA keeper HA keeper

Health checks

Get state,
Live nodes

pg_paxospg_paxos?

Distributed sequences

coordinator

events

events_1 events_1’ events_2 events_2’

events events’ events events’

CREATE TABLE events (
 tenant_id int,
 event_id bigserial,
 ...
);

ALTER SEQUENCE
START 1 << 48 ...

ALTER SEQUENCE
START 2 << 48 ...

events_3’ events_4 events_4’events_3

