
Securing PostgreSQL
From External Attack

BRUCE MOMJIAN

Database systems are rich with attack vectors to exploit. This
presentation explores the many potential PostgreSQL external
vulnerabilities and shows how they can be secured. Includes
concepts from Magnus Hagander
Creative Commons Attribution License http://momjian.us/presentations

Last updated: January, 2017

1 / 29

Attack Vectors

https://www.flickr.com/photos/twalmsley/

2 / 29

External Attack Vectors

◮ ’Trust’ security

◮ Passwords / authentication theft

◮ Network snooping

◮ Network pass-through spoofing

◮ Server / backup theft

◮ Administrator access

3 / 29

Internal Attack Vectors
(Not Covered)

◮ Database object permissions

◮ SQL injection attacks

◮ Application vulnerability

◮ Operating system compromise

4 / 29

Authentication Security

https://www.flickr.com/photos/brookward/

5 / 29

Avoid ’Trust’ Security

TYPE DATABASE USER CIDR-ADDRESS METHOD
"local" is for Unix domain socket connections only
local all all trust
IPv4 local connections:
host all all 127.0.0.1/32 trust
IPv6 local connections:
host all all ::1/128 trust

Solution: Use the initdb -A flag, i.e., you don’t want to see this:

WARNING: enabling "trust" authentication for local connections
You can change this by editing pg_hba.conf or using the -A option the
next time you run initdb.

6 / 29

Password Snooping

Vulnerable to snooping

Client

PostgreSQL

Database

Server

md5(password+username)
md5(password+username)
md5(password+username)

md5(password+username)

Using ’username’ in the MD5
string prevents the same password
used by different users from
appearing the same. It also adds
some randomness to the md5
checksums.

Connection Request

Need Password

Password Sent

Database

7 / 29

MD5 Authentication
Prevents Password Snooping

Database

PostgreSQL

Database

Server

md5(password+username)
md5(password+username)
md5(password+username)

md5(password+username)

connection request

need password, sent random salt

md5(md5(password+username) + salt)
Client

8 / 29

MD5 Authentication
Prevents Password Replay

X

OK

Malicious

PostgreSQL

Database

Server

md5(password+username)
md5(password+username)
md5(password+username)

md5(password+username)

connection request

need password, sent random salt0

md5(md5(password+username) + salt0)

connection request

need password, sent random salt1

md5(md5(password+username) + salt0)

replay

Client
Database

Client
Database

salt is a random four-byte integer so millions of connection
attempts might allow the reuse of an old authentication reply.

9 / 29

Password Attacks

◮ Weak passwords

◮ Reuse of old passwords

◮ Brute-Force password attacks

None of these vulnerabilities is prevented by Postgres directly,
but external authentication methods, like LDAP, PAM, and SSPI,
can prevent them.

10 / 29

Queries and Data Still
Vulnerable to Network Snooping

Queries and data vulnerable to snoopingClient
Database

PostgreSQL

Database

Server

Barr Bearings | $10230 | James Akel

SELECT * FROM customer;

Password changes are also vulnerable to snooping.

11 / 29

SSL Prevents Snooping
By Encrypting Queries and Data

Queries and data encrypted by SSLClient
Database

PostgreSQL

Database

Server

AES256(Barr Bearings | $10230 | James Akel)

AES256(SELECT * FROM customer);

12 / 29

Preventing Spoofing

https://www.flickr.com/photos/tomhickmore/

13 / 29

Localhost Spoofing
While the Database Server Is Down

X

Client
Database

Fake PostgreSQL

Database

Server

Connection Request

Password Sent

use with the real server
Records passwords for later

Need Plain Password

Uses a fake socket or binds to

and 5432 is not a root−only port.

port 5432 while the real server
is down. (/tmp is world−writable

libpq’s "requirepeer" helps here.)

The server controls the choice of ’password’ instead of ’md5’.

14 / 29

Network Spoofing

X

Client
Database

Fake PostgreSQL

Database

Server

Connection Request

Password Sent

use with the real server
Records passwords for later

Need Plain Password

Without SSL ’root’ certificates
there is no way to know if the
server you are connecting
to is a legitimate server.

15 / 29

Network Spoofing Pass-Through

OK

Client
Database Database

Server

PostgreSQLFake PostgreSQL

Database

Server

Records passwords for later
use with the real server. It
can also capture queries,

queries.
data, and inject its own

Password Sent

Connection Request

Without SSL ’root’ certificates
there is no way to know if the
server you are connecting
to is a legitimate server.

Need Plain Password

Query

Result

Query

Result

16 / 29

SSL ’Prefer’ Is Not Secure

OK

Client
Database Database

Server

PostgreSQLFake PostgreSQL

Database

Server

Records passwords for later
use with the real server. It
can also capture queries,

queries.
data, and inject its own

Non−SSL

Without SSL ’root’ certificates
there is no way to know if the
server you are connecting
to is a legitimate server.

Query

Result

Query

Result

Prefer SSL

No SSL

SSL or
Non−SSL

17 / 29

SSL ’Require’ Is Not Secure
From Spoofing

OK

Client
Database Database

Server

PostgreSQLFake PostgreSQL

Database

Server

Records passwords for later
use with the real server. It
can also capture queries,

queries.
data, and inject its own

Without SSL ’root’ certificates
there is no way to know if the
server you are connecting
to is a legitimate server.

Query

Result

Query

Result

SSL or
Non−SSL

OK SSL

SSL

Require SSL

18 / 29

SSL ’Verify-CA’ Is Secure
From Spoofing

server.crt

X

root.crt

Database

Fake PostgreSQL

Database

Server

PostgreSQLSSL verify-ca

Invalid certificate

Server
(no CA signature)Client

Database

19 / 29

SSL Certificates for Authentication

root.crt

server.crt

Client
Database Database

Server

PostgreSQLrequest for certificate

SSL certificate w/ cn

20 / 29

Data Encryption
To Avoid Data Theft

https://www.flickr.com/photos/debarshiray/

21 / 29

Disk Volume Encryption

https://www.flickr.com/photos/icebrkr/

22 / 29

Column Encryption

id | name | credit_card_number

--------+--------------------+------------------------------

428914 | Piller Plaster Co. | \xc30d04070302254dc045353f28

; 456cd241013e2d421e198f3320e8

; 41a7e4f751ebd9e2938cb6932390

; 5c339c02b5a8580663d6249eb24f

; 192e226c1647dc02536eb6a79a65
; 3f3ed455ffc5726ca2b67430d5

Encryption methods are decryptable (e.g. AES), while hashes are
one-way (e.g. MD5). A one-way hash is best for data like
passwords that only need to be checked for a match, rather than
decrypted.

23 / 29

Where to Store the Key?
On the Server

Decrypted data

key

Client
Database

PostgreSQL

Database

Server

Barr Bearings | $10230 | James Akel

SELECT * FROM customer;

24 / 29

Store the Key on an
Intermediate Server

key

Decrypted Encrypted

SELECT SELECT

Client
Database

Cryptographic

Server

PostgreSQL

Database

Server

Barr Bearings V#ja20a

25 / 29

Store the Key on the Client and
Encrypt/Decrypt on the Server

key
Decrypted dataClient

Database

PostgreSQL

Database

Server

Barr Bearings | $10230 | James Akel

SELECT decrypt(col, key) FROM customer;

26 / 29

Encrypt/Decrypt on the Client

key
Encrypted dataClient

Database

PostgreSQL

Database

Server

V#aei32ok3

SELECT * FROM customer;

This prevents server administrators from viewing sensitive data.

27 / 29

Store the Key on a
Client Hardware Token

key Encrypted dataClient
Database

PostgreSQL

Database

Server

V#aei32ok3

SELECT * FROM customer;

This prevents problems caused by client hardware theft.

28 / 29

Conclusion

http://momjian.us/presentations https://www.flickr.com/photos/stevensnodgrass/

29 / 29

