Hacking with Postgres 11
- pg_threads

allegro

* |Introduction about me and my company

* PostgreSQL 11 stored procedures current state and history

* Writing extensions - technical background

* pg_threads - building POSIX thread API using PostgreSQL extension (3)
* How does it work - example usage

* Transactional and nontransactional API - another extension (3)

* How does it work - example usage

* Putting it all together - solving a Wordament game in single thread
* @Game solution using pg_threads - scaling up

* Adding another node - scaling out

* Conclusions

allegro

* How developers see RDBMS vs. what really a modern RDBMS is

* PostgreSQL offers 2D extensibility: create language: create procedure

* PostgreSQL default language is PL/pgSQL

* in PostgreSQL core since 1998 v6.4- loosely based on Oracle PL/SQL

* PL/pgSQL functions, procedures, triggers fully fledged procedural language

* reduced network traffic, encapsulation, security

* J|ow level "C" functions - usually base for PostgreSQL extensions

* resources - official documentation -
https://www.postgresqgl.org/docs/11/static/server-programming.htm]

* tutorials - http://www.postgresqltutorial.com/postgresql-stored-procedures/

allegro

* PostgreSQL is a multiuser, multiprocessing environment
* inthe simplest each psqgl session constitutes an execution context
* instock version we lack a powerful abstraction of threads
* extension to the rescue - pg_threads
* abstract APl borrowed from POSIX threads
v’ create_thread(name,thread_proc,hostname:=NULL);
v’ start_thread(name);
v’ join_thread(name);
v’ destroy_thread(name);

allegro

* using libpq client library

* asynchronous query execution

* exposing thread state via regular table thread_list

* using PostgreSQL backend processes as thread containers

* athread has a state CREATED,RUNNING,FINISHED

* still in statu nascendi - APl may change in future

* data separation - local variables, local temporary tables - private per thread
* datasharing - regular PostgreSQL tables - shared among threads

* time for simple demos: sleepers and idlers

allegro

* By default threads can use regular Postgres tables to communicate

* Using tables is transactional and lacks synchronization primitives

* Need for well defined synchronous/asynchronous communication API
* Non-transactional APl - pg_pipe - loosely based on UNIX pipes

* Private and public pipes, blocking and nonblocking mode - timeout

* Non persistent, all unreceived messages lost on instance restart

* Uses dynamic background worker process - pipe server

* Useful for debugging, communication with external service

* Multiplexing large number of users over fewer connections

* Independent transactions

allegro

* Stock Postgres version has LISTEN, NOTIFY, pg_notify

* Has limitations, no timeout and difficult to pass data programatically

* For complementary purposes - pg_alert - transactional communication
* Transaction based, blocking and nonblocking mode - timeout

* Alerts are sent only sent on COMMIT

* Loosely based on UNIX signals but has idempotency property

* For communication with external service on transaction boundaries

* Uses pg_pipe + Postgres native advisory locks API

allegro

* Threads should also be able to expose its current progress

* |n stock version possible writing to log or on a console: raise notice
* Another module pg_app_info implements this feature

* Exposes non-transactionally extra thread info (module, action)

* Info can be updated independently on the transaction boundaries
 Datais visible in a table that can be joined to pg_stats_activity

* Useful for monitoring, tuning and debugging via regular select

* Uses pg_pipe + background process for session tracking

allegro

* original from Microsoft

* popular as mobile app

* displays a board 4x4 with random letters

* goalis find as many words as long as possible
* 120 sec for solution

* 3 letter minimum length

* no reuse of board tiles in current run

* greatforlearning new words :)

allegro

10

* data structures
v' current word being built - local variable
v' board representing state of the game - temporary table
v’ solution table for found words - temporary table
v dictionary for checking valid words - regular PostgreSQL table

* algorithm used - depth first search tree with dynamic decision pruning
* Unicode support for many languages

allegro

* let's play! : e : 1

* psqgl> select play('xtoe evrc aean ygas');

12

psql> select play(‘xtoe evrc aean ygas’); X T O E
CARNAGE
1 6 z 3
CAVERNS E \V/ R C:
CORNAGE
CRANAGE : | N
EXTRAVAGANCE A E a I\‘
(275 rows) 5 4 - 2 2
Y i .[\ \ S

Time: 2413.135 ms

allegro

13

* in general game theory is a branch of mathematics

* J|ots of practical applications in economy, military

* easily parallelizable - “embarrassingly parallel”

* Wordament game is no other than that - inherent parallelism

* upto 16 independent search trees can be run in parallel

allegro

14

W]O|R WIO|R

NJT|D N|IT|D
= L\ EIM]A
. . .
refactoring code a bit —— 5
* partitioning root search for distributing load N1 | g e
* replicating game state .
* expanding data structures - new table gsolution =
* jtscales up!
w|o]|R) W|O|R
EIM|A . ‘ EIM]|A
W]JO|R W]JO|R
T|D NJT|D
= L\ A = L\ A

allegro

15

* scaling out > scaling up - use commodity hardware

* using pg_logical publication and subscription

* another node set-up in logical replication - asymmetric - pg_logical is
unidirectional

* 2 sets of PUB/SUB: input and output

* input publication pushes input data to slave(s)

* output publication pushes output data to master - optional part

* alternatively master fetches remote data via FDW

* threads extension already support remote threads - execution context
distribution

* pg_logical - data distribution/replication

e we can stick to paradigm - process data locall
allegro

16

* no refactoring this time - we are already parallel

* enable slave host

* justrunthe same parallelized version

* let built-in thread scheduler pick up the hosts for running

* |language tables converge via input publication -> to slave(s)

* gsolution table converges results via output publication/subscription -> to
master

* itscales out!

allegro

17

NIT|D T|D N|T|D T|D
E|M|A E{M]A E[M|A E|M|A
WJO|R]| IR WIlOIR WIO|R
1D T|D =15 N[T|D
EIM|A EIMIA
EIM|A EIMIA
e -
-— > —_—
\ \
—_— < -
W|O|R - W|O|R W|O|R S| W|O|R
7D — N|T|D T|D R NJTID
E|M]|A ' E[M|A E[M|A ' EIM]|A
WIO|R WJO|R W|O|R W|O|R
NIT|D T|D NITID TID
EIM]A EIM]|A EIMIA EIMIA

allegro

18

* PostgreSQL is inherently parallel environment

* needs a little user support in parallelization - user assisted

* more and more contexts use parallel workers already - out of the box

* scaling up and out - thread extension + logical replication and/or sharding

* nextstep look at PostgreSQL dynamic background processes

* try outthreads in BDR environment

* PostgreSQL is a powerful computational environment that can be main data
hub in your data center

allegro

Thank you for your attention.
Questions?

allegro

