
VACUUM and Autovacuum:

a short overview



1) Why do we need VACUUM and autovacuum?

2) Types of VACUUM:

• VACUUM

• VACUUM FULL

• FREEZE

• ANALYZE

3) Autovacuum

4) Possible changes in newer versions of Postgres

Overview
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In Postgres, DELETE does not remove rows from the relation.

UPDATE = INSERT + DELETE. This creates dead tuples.

VACUUM:

• Prevents table bloat by removing dead tuples

(tuples not visible to any of the active transactions)

• Prevents crashes due to XID wraparound

• Gathers information for future query optimization

Vacuuming must happen frequently enough to perform all these tasks.

Manually launching VACUUM all the time would be inconvenient.

Autovacuum automates this process.

=> it is useful to have an idea of how VACUUM + autovacuum work for efficiently preventing 

possible problems with table bloat and wraparound.

Purpose of VACUUM and autovacuum

3



• Restructures pages and reclaims space taken by dead rows (rows that 

were deleted BEFORE any of the current transactions started)

• Removes dead rows from indexes and TOAST tables

• Having long-running transactions can mess everything up

(including long transactions on replica if hot_standby_feedback == on)

• Truncates the table if possible

• Updates free space map

• Done to avoid needing VACUUM FULL

NOT NEEDED:

• On replica

• After TRUNCATE

VACUUM
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• Shrinks table size

(rewrites all “alive” tuples into a new file as compactly as possible)

• Can only be launched manually (not by autovacuum)

• OID of the relation stays the same, relfilenode (on-disk name) changes

Cons:

• ACCESS EXCLUSIVE LOCK (no reading or writing allowed)

• table size ≤ needed space ≤ table size * 2

• Need a REINDEX

• Takes a long time

Alternative:

pg_repack - does allow reads and writes, but needs more space (≥ table size * 2)

VACUUM FULL
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• Scans the table (without skipping blocks) and

freezes rows to prevent XID wraparound

VACUUM FREEZE (1)
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XIDs are 32-bit numbers

They make up a “ring”: after

XID=2^32-1 we have XID=0 again.

For the current XID:

Half the ring “clockwise” = future

Half the ring “counterclockwise” = past



• Scans the table (without skipping blocks) and

freezes rows to prevent XID wraparound

VACUUM FREEZE (2)
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• Scans the table (without skipping blocks) and

freezes rows to prevent XID wraparound

VACUUM FREEZE (3)
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• Scans the table (without skipping blocks) and

freezes rows to prevent XID wraparound

VACUUM FREEZE (4)
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• Scans the table and freezes rows to prevent XID wraparound

• Uses visibility map to possibly skip over blocks

• VACUUM FULL performs freeze either way

• Cannot be performed separately from the normal VACUUM (for now)

VACUUM FREEZE (5)
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• Updates visibility map

• Updates table statistics

• Can be launched on its own (just ANALYZE)

VACUUM ANALYZE
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• Consists of Autovacuum launcher + workers

• Runs VACUUM FREEZE to prevent XID wraparound

(even if autovacuum=off)

• Runs VACUUM and ANALYZE to prevent bloat

(if autovacuum=on and track_counts=on)

• Does not remove existing bloat

(use VACUUM FULL or pg_repack for that)

• Turning it off is a bad idea (unless you really know what you’re doing)

• Can be configured to be more effective

Autovacuum
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What could change for VACUUM and Autovacuum in the near future:

1) FAST FREEZE

2) Faster or disabled table truncation at VACUUM

3) Block level parallel vacuum

4) Improved VACUUM for GiST

Newer versions of PostgreSQL
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What could change for VACUUM and Autovacuum in the near future:

https://commitfest.postgresql.org/22/1817/

PROBLEM:

VACUUM FREEZE is critical for avoiding crashes due to XID wraparound, but

It can only be conducted alongside a normal VACUUM, which makes it slower

PROPOSED SOLUTION:

FAST_FREEZE (FREEZE_ONLY / WITHOUT_INDEX_CLEANUP) option that:

• Doesn’t reclaim dead tuples

• Doesn’t cleanup indexes

STATUS:

Achieved a significant speedup of FREEZE, discussing implementation details

Such a mode could also be used by autovacuum (as a separate patch).

FAST FREEZE
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What could change for VACUUM and Autovacuum in the near future:

https://commitfest.postgresql.org/22/1981/

PROBLEM:

Table truncation at the end of VACUUM requires:

• Taking an ACCESS EXCLUSIVE LOCK

• Scanning shared buffers (can be slow)

If shared_buffers are big, other transactions have to wait

In some cases, table grows back right away

PROPOSED SOLUTIONS:

• Add a storage parameter for disabling table truncation for VACUUM

• Speed up shared buffers scan (useful for TRUNCATE and DROP)

• Memorize the buffers that we need to discard in advance

STATUS: Long-term solution might appear in PG 13, short-term is being discussed

Table truncation at VACUUM
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What could change for VACUUM and Autovacuum in the near future:

https://commitfest.postgresql.org/22/1774/

GOAL: Implement a block-level parallel VACUUM

STATUS: Idea is approved, patch gives improvement, discussing details and

bugs (possibly will appear in PG13)

(Picture: test by Masahiko Sawada)

Block level parallel VACUUM
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What could change for VACUUM and Autovacuum in the near future:

https://commitfest.postgresql.org/22/1598/

PROBLEMS:

• Empty pages for GiST aren’t reused, which can lead to bloat

• Algorithm for scanning the relation is not optimal

GOALS:

• Make GiST reuse empty pages for new page splits

• Improve scanning algorithm to read GiST pages in physical order

STATUS: Active discussion of the code and its possible drawbacks.

Optimizing VACUUM for GiST
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• Long-running transactions will mess things up

• Help autovacuum:

– After inserting a lot of data call FREEZE

– After deleting/updating a lot of data call VACUUM

• Temporary tables are not vacuumed by autovacuum

• A backend can only clean its own temporary tables

What to keep in mind
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Turning it on and logging:

autovacuum = on  (track_counts = on needed in order for this to work)

log_autovacuum_min_duration = N ms (log actions that took ≥ N ms, -1 for no logging)

Configuring autovacuum (1)
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Controlling when to VACUUM a table:

autovacuum_vacuum_scale_factor (default: 0.2 - works bad with huge tables)

autovacuum_vacuum_threshold (default: 50)

We only decide to vacuum a table if the number of dead rows in it is ≥

≥ (number of rows in relation) * autovacuum_vacuum_scale_factor + autovacuum_vacuum_threshold 

Sometimes it makes sense to redefine those values for specific relations:

ALTER TABLE tbl SET (autovacuum_vacuum_scale_factor = 0);

ALTER TABLE tbl SET (autovacuum_vacuum_threshold = 10000);

Controlling when to ANALYZE a table:

autovacuum_analyze_scale_factor

autovacuum_analyze_threshold

Controlling when to FREEZE a table:

autovacuum_freeze_max_age

autovacuum_multixact_freeze_max_age

Configuring autovacuum (2)

20



Frequency of launching workers:

autovacuum_naptime – MIN delay between running autovacuum workers on ONE db

Between two launches of a worker in the whole cluster we wait

max( 110 , autovacuum_naptime / (number of databases)) ms

Number of workers and their use of memory:

autovacuum_work_mem (defaults to maintenance_work_mem) 
– max amount of memory used by ONE autovacuum worker

autovacuum_max_workers
– max amount of autovacuum workers for the whole cluster

NOTES:

• Too few workers will lead to poor vacuuming, too many will lead to using too much memory

• You may want to increase autovacuum_work_mem if you see it going through the same 

indexes many times (or decrease autovacuum_vacuum_[scale_factor|threshold]).

• If you increase autovacuum_max_workers, you might want to increase 

autovacuum_vacuum_cost_limit too, because the limit is global for all workers

Configuring autovacuum (3)
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Controlling I/O impact:

autovacuum_vacuum_cost_limit (defaults to vacuum_cost_limit) - global for all workers!

autovacuum_vacuum_cost_delay (defaults to vacuum_cost_delay)

ALGORITHM:

Keep vacuuming until autovacuum_vacuum_cost_limit is reached,

sleep for autovacuum_vacuum_cost_delay ms, resume vacuuming.

Things contributing to reaching the limit are vacuum_cost_page_[ hit | miss | dirty ].

If there is a need to increase the throughput, It’s easier to raise

autovacuum_vacuum_cost_limit than to adjust all the other parameters.

Configuring autovacuum (4)
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You can also ask me by email: akenteva.anna@yandex.ru

Questions?
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