
VACUUM and Autovacuum:

a short overview

1) Why do we need VACUUM and autovacuum?

2) Types of VACUUM:

• VACUUM

• VACUUM FULL

• FREEZE

• ANALYZE

3) Autovacuum

4) Possible changes in newer versions of Postgres

Overview

2

In Postgres, DELETE does not remove rows from the relation.

UPDATE = INSERT + DELETE. This creates dead tuples.

VACUUM:

• Prevents table bloat by removing dead tuples

(tuples not visible to any of the active transactions)

• Prevents crashes due to XID wraparound

• Gathers information for future query optimization

Vacuuming must happen frequently enough to perform all these tasks.

Manually launching VACUUM all the time would be inconvenient.

Autovacuum automates this process.

=> it is useful to have an idea of how VACUUM + autovacuum work for efficiently preventing

possible problems with table bloat and wraparound.

Purpose of VACUUM and autovacuum

3

• Restructures pages and reclaims space taken by dead rows (rows that

were deleted BEFORE any of the current transactions started)

• Removes dead rows from indexes and TOAST tables

• Having long-running transactions can mess everything up

(including long transactions on replica if hot_standby_feedback == on)

• Truncates the table if possible

• Updates free space map

• Done to avoid needing VACUUM FULL

NOT NEEDED:

• On replica

• After TRUNCATE

VACUUM

4

• Shrinks table size

(rewrites all “alive” tuples into a new file as compactly as possible)

• Can only be launched manually (not by autovacuum)

• OID of the relation stays the same, relfilenode (on-disk name) changes

Cons:

• ACCESS EXCLUSIVE LOCK (no reading or writing allowed)

• table size ≤ needed space ≤ table size * 2

• Need a REINDEX

• Takes a long time

Alternative:

pg_repack - does allow reads and writes, but needs more space (≥ table size * 2)

VACUUM FULL

5

• Scans the table (without skipping blocks) and

freezes rows to prevent XID wraparound

VACUUM FREEZE (1)

6

XIDs are 32-bit numbers

They make up a “ring”: after

XID=2^32-1 we have XID=0 again.

For the current XID:

Half the ring “clockwise” = future

Half the ring “counterclockwise” = past

• Scans the table (without skipping blocks) and

freezes rows to prevent XID wraparound

VACUUM FREEZE (2)

7

XIDs are 32-bit numbers

They make up a “ring”: after

XID=2^32-1 we have XID=0 again.

For the current XID:

Half the ring “clockwise” = future

Half the ring “counterclockwise” = past

• Scans the table (without skipping blocks) and

freezes rows to prevent XID wraparound

VACUUM FREEZE (3)

8

XIDs are 32-bit numbers

They make up a “ring”: after

XID=2^32-1 we have XID=0 again.

For the current XID:

Half the ring “clockwise” = future

Half the ring “counterclockwise” = past

• Scans the table (without skipping blocks) and

freezes rows to prevent XID wraparound

VACUUM FREEZE (4)

9

XIDs are 32-bit numbers

They make up a “ring”: after

XID=2^32-1 we have XID=0 again.

For the current XID:

Half the ring “clockwise” = future

Half the ring “counterclockwise” = past

• Scans the table and freezes rows to prevent XID wraparound

• Uses visibility map to possibly skip over blocks

• VACUUM FULL performs freeze either way

• Cannot be performed separately from the normal VACUUM (for now)

VACUUM FREEZE (5)

10

• Updates visibility map

• Updates table statistics

• Can be launched on its own (just ANALYZE)

VACUUM ANALYZE

11

• Consists of Autovacuum launcher + workers

• Runs VACUUM FREEZE to prevent XID wraparound

(even if autovacuum=off)

• Runs VACUUM and ANALYZE to prevent bloat

(if autovacuum=on and track_counts=on)

• Does not remove existing bloat

(use VACUUM FULL or pg_repack for that)

• Turning it off is a bad idea (unless you really know what you’re doing)

• Can be configured to be more effective

Autovacuum

12

What could change for VACUUM and Autovacuum in the near future:

1) FAST FREEZE

2) Faster or disabled table truncation at VACUUM

3) Block level parallel vacuum

4) Improved VACUUM for GiST

Newer versions of PostgreSQL

13

What could change for VACUUM and Autovacuum in the near future:

https://commitfest.postgresql.org/22/1817/

PROBLEM:

VACUUM FREEZE is critical for avoiding crashes due to XID wraparound, but

It can only be conducted alongside a normal VACUUM, which makes it slower

PROPOSED SOLUTION:

FAST_FREEZE (FREEZE_ONLY / WITHOUT_INDEX_CLEANUP) option that:

• Doesn’t reclaim dead tuples

• Doesn’t cleanup indexes

STATUS:

Achieved a significant speedup of FREEZE, discussing implementation details

Such a mode could also be used by autovacuum (as a separate patch).

FAST FREEZE

14

https://commitfest.postgresql.org/22/1817/

What could change for VACUUM and Autovacuum in the near future:

https://commitfest.postgresql.org/22/1981/

PROBLEM:

Table truncation at the end of VACUUM requires:

• Taking an ACCESS EXCLUSIVE LOCK

• Scanning shared buffers (can be slow)

If shared_buffers are big, other transactions have to wait

In some cases, table grows back right away

PROPOSED SOLUTIONS:

• Add a storage parameter for disabling table truncation for VACUUM

• Speed up shared buffers scan (useful for TRUNCATE and DROP)

• Memorize the buffers that we need to discard in advance

STATUS: Long-term solution might appear in PG 13, short-term is being discussed

Table truncation at VACUUM

15

https://commitfest.postgresql.org/22/1981/

What could change for VACUUM and Autovacuum in the near future:

https://commitfest.postgresql.org/22/1774/

GOAL: Implement a block-level parallel VACUUM

STATUS: Idea is approved, patch gives improvement, discussing details and

bugs (possibly will appear in PG13)

(Picture: test by Masahiko Sawada)

Block level parallel VACUUM

16

https://commitfest.postgresql.org/22/1774/

What could change for VACUUM and Autovacuum in the near future:

https://commitfest.postgresql.org/22/1598/

PROBLEMS:

• Empty pages for GiST aren’t reused, which can lead to bloat

• Algorithm for scanning the relation is not optimal

GOALS:

• Make GiST reuse empty pages for new page splits

• Improve scanning algorithm to read GiST pages in physical order

STATUS: Active discussion of the code and its possible drawbacks.

Optimizing VACUUM for GiST

17

https://commitfest.postgresql.org/22/1598/

• Long-running transactions will mess things up

• Help autovacuum:

– After inserting a lot of data call FREEZE

– After deleting/updating a lot of data call VACUUM

• Temporary tables are not vacuumed by autovacuum

• A backend can only clean its own temporary tables

What to keep in mind

18

Turning it on and logging:

autovacuum = on (track_counts = on needed in order for this to work)

log_autovacuum_min_duration = N ms (log actions that took ≥ N ms, -1 for no logging)

Configuring autovacuum (1)

19

Controlling when to VACUUM a table:

autovacuum_vacuum_scale_factor (default: 0.2 - works bad with huge tables)

autovacuum_vacuum_threshold (default: 50)

We only decide to vacuum a table if the number of dead rows in it is ≥

≥ (number of rows in relation) * autovacuum_vacuum_scale_factor + autovacuum_vacuum_threshold

Sometimes it makes sense to redefine those values for specific relations:

ALTER TABLE tbl SET (autovacuum_vacuum_scale_factor = 0);

ALTER TABLE tbl SET (autovacuum_vacuum_threshold = 10000);

Controlling when to ANALYZE a table:

autovacuum_analyze_scale_factor

autovacuum_analyze_threshold

Controlling when to FREEZE a table:

autovacuum_freeze_max_age

autovacuum_multixact_freeze_max_age

Configuring autovacuum (2)

20

Frequency of launching workers:

autovacuum_naptime – MIN delay between running autovacuum workers on ONE db

Between two launches of a worker in the whole cluster we wait

max(110 , autovacuum_naptime / (number of databases)) ms

Number of workers and their use of memory:

autovacuum_work_mem (defaults to maintenance_work_mem)
– max amount of memory used by ONE autovacuum worker

autovacuum_max_workers
– max amount of autovacuum workers for the whole cluster

NOTES:

• Too few workers will lead to poor vacuuming, too many will lead to using too much memory

• You may want to increase autovacuum_work_mem if you see it going through the same

indexes many times (or decrease autovacuum_vacuum_[scale_factor|threshold]).

• If you increase autovacuum_max_workers, you might want to increase

autovacuum_vacuum_cost_limit too, because the limit is global for all workers

Configuring autovacuum (3)

21

Controlling I/O impact:

autovacuum_vacuum_cost_limit (defaults to vacuum_cost_limit) - global for all workers!

autovacuum_vacuum_cost_delay (defaults to vacuum_cost_delay)

ALGORITHM:

Keep vacuuming until autovacuum_vacuum_cost_limit is reached,

sleep for autovacuum_vacuum_cost_delay ms, resume vacuuming.

Things contributing to reaching the limit are vacuum_cost_page_[hit | miss | dirty].

If there is a need to increase the throughput, It’s easier to raise

autovacuum_vacuum_cost_limit than to adjust all the other parameters.

Configuring autovacuum (4)

22

You can also ask me by email: akenteva.anna@yandex.ru

Questions?

23

