
Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Extending PostgreSQL in C: An Introduction

February 2, 2020



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

About the Author

(Generic Introduction of Author)



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

About Me

• New contributor to PostgreSQL (one bugfix so far)

• Heads the PostgreSQL-related R&D at Adjust GmbH

• Long-time PostgreSQL user (since 1999)

• Been around the community for a long time.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

About Adjust

We are big PostgreSQL users. Over 10PB of data, with
near-real-time analytics on 1PB of raw data and 400,000 inbound
requests per second.

We provide mobile advertisement attribution and analytics services
to companies who buy advertising.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Why C?

• Fast

• Full Access to Postgres Internals

• Memory Efficient (important on large data sets)

No alternative for high performance extensions. Even Rust or C++
may have difficulties with performance trade offs.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

General Problems with C

• No Name spaces for linker symbols

• Difficulty with Exception Handling

• Object orientation is not directly supported in the syntax

• Lower-level pointer management



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Solutions to C Shortcomings in PostgreSQL

• Linker Symbol Collision: dlopen/dlsym and coding
conventions

• No Exceptions: ereport/elog/PGTRY/PGCATCH

• No OOP: Not relevant, we approach things more like FP

• Pointer/Memory Management: See this talk!



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Memory Management problems with C

• Heap Fragmentation

• Memory Leaks

• Double free bugs

• No garbage collection!

This talk is about how PostgreSQL solves these problems for you.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Overview

How Memory is Managed in PostgreSQL



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Memory Management in C

• Buffers and data

• Primitive types can be thought of as different sized atomic
pieces of the buffer.

• Elements may have alignment requirements.

• Structs and arrays are just syntactic sugar around buffers and
data.

• Allocate and free buffers, but write data

• Programmer controls where buffers are stored.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Typical C Approaches (non-PostgreSQL)

• Avoid using the heap

• Avoid malloc and free

• Use the stack for garbage collection

PostgreSQL allows you to escape these patterns when
programming against it.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Introducing the PostgreSQL Allocation Set

• Groups allocations together of same lifetime

• Memory is freed together

• Can be created, destroyed, or reset.

• Items within them can be palloc’d or pfreed



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Allocation Set Details

• By default, starts out as 8kb, with each subsequent allocation
doubling

• Large buffers with internal mapping of freed space.

• Every allocation has an additional pointer to its allocation set.

• Block allocations may be marked to re-use on reset. Typically
this is just for the first block of 8k.

• Allocation sets have parents. Destroy and reset operations
cascade to children.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Practical Considerations

• First few blocks end up on heap in glibc

• Far fewer malloc operations needed than manually using
malloc

• Larger blocks end up in mapped segments in many platforms

• Avoids memory leaks and double free issues.

• Overall a good, performant design.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Introducing Memory Contexts

Although Allocation Sets and Memory Contexts here are tightly
coupled in the source, in this talk I use memory contexts
exclusively to discuss memory lifecycle control.

• Allocation Sets with Defined Lifetimes

• A tree under TopMemoryContext

• A child context may have any lifetime not longer than its
parent

• When a parent is reset or deleted, this recurses over children.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Global Memory Contexts as a tree

TopMemoryContext*

• PostmasterContext

• CacheMemoryContext*

• MessageContext
• TopTransactionContext

• CurTransactionContext*
• PortalContext*
• ErrorContext*

* Recommended to use



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Operational Memory Contexts

In queries:

• Per Plan Node

• Per Tuple

• Aggregate Contexts

For logical replication workers:

• ApplyContext (worker lifetime)

• ApplyMessageContext (per protocol message)



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Per-Tuple Context Optimizations

• First block in allocation (8k) reused

• Allocation reset at beginning of next tuple

• Malloc is expensive, so we avoid it!

• Most memory lives on the heap and is quickly reused.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Notes on Aggregates

Aggregations have longer lifespans than the tuples they aggregate.
Therefore:

• use AggCheckCallContext() to find Context

• Must pass in pointer to write to in second arg.

• For example AggCheckCallContext(fcinfo, &agg context)

• Otherwise may reference data from wrong tuple.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

How pfree works

• Pointer is passed to pfree.

• Pointer - sizeof(void *) used to find memory context pointer.

• Item freed from correct memory context.

• Integer wraparound if null pointer passed where null = 0x00



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Best Practices



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

palloc, palloc0, and MemoryContextAlloc

• palloc is like malloc but with lifecycle management

• palloc0 does extra work and cannot take advantage of calloc
shortcuts (mapping zero pages)

• MemoryContextAlloc allows you to specify a memory context.
Use this when you want to step outside the default context.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Best Practices for Aggregates

• use AggCheckCallContext to get aggregate memory context

• Check output of AggCheckCallContext in case not called in
agg

• When likely to allocate memory in an aggregation context,
switch to the proper memory context.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Using CachedMemoryContext vs TopMemoryContext

• Things that need to be cleared together belong together

• TopMemoryContext is for things that never need to be cleared

• Usually better to use a child memory context.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Avoid Creating Top-Level Contexts

• Hard to track in code

• Hard to reason about when they are cleared

• No reason not to make your ”top-level” a child of the global
top-level



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Always Test with cassert Enabled

--enable-cassert has a number of important functions:

• Enables sanity checks that may impact performance

at various points in the code.

• Zeroes out all memory context memory before

de-allocating.

• Prevents a number of subtle bugs from causing

problems only in production.

• ALWAYS test when developing UDFs or stored procs

using SPI



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Advanced Topic

The Server Programming Interface and Memory Contexts



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Introducing SPI

SPI is the Server Programming Interface.

• For C-language user defined functions and stored procedures

• Allows running SQL queries from inside C directly against the
current backend.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Where SPI has MemoryContexts

• Under TopLevelContext (the SPI stack)

• Under TopTransactionContext (normal operations)

• Under PortalContext (if in implicit transaction)

• Under CachedMemoryContext (Cached Plans)



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

How SPI Allocates Plans

• Plans usually allocated in SPI executor context

• Under TopTransactionContext or PortalContext

• In theory, it is possible to allocate elsewhere initially but not
likely.

• Each plan has its own memory context.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

How SPI Caches Plans

(reformatted slightly)

/*

* Mark it saved, reparent it under CacheMemoryContext,

* and mark all the component CachedPlanSources as

* saved. This sequence cannot fail partway through,

* so there’s no risk of long-term memory leakage.

*/

plan->saved = true;

MemoryContextSetParent(plan->plancxt,

CacheMemoryContext);



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Conclusions

PostgreSQL has Managed Memory



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

PostgreSQL has Managed Memory

• No more malloc/free madness

• Avoids memory leaks

• High-performance

• Does most of the work for you

• but you can still mess it up



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

User Defined Functions in C

Why?

• The building block of everything else

• Needed for types, index access, and much more.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Starting with the Boilerplate
PG MODULE MAGIC;

This macro sets up the compile-time options relevant to function
invocation. It is necessary for certain kinds of structs to be passed
into functions. This also means changing preset definitions such as
MAX INDEX KEYS can prevent C function binary compatibility.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Invoking functions

PG_FUNCTION_INFO_V1(country_name);

Datum country_name(PG_FUNCTION_ARGS)

{

country c = PG_GETARG_UINT8(0);

PG_RETURN_TEXT_P(country_to_name(c));

}

PG_FUNCTION_INFO_V1(country_common_name);

Datum country_common_name(PG_FUNCTION_ARGS)

{

country c = PG_GETARG_UINT8(0);

PG_RETURN_TEXT_P(country_to_common_name(c));

}



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Once Again

PG_FUNCTION_INFO_V1(country_name);

Datum country_name(PG_FUNCTION_ARGS)

{

country c = PG_GETARG_UINT8(0);

PG_RETURN_TEXT_P(country_to_name(c));

}

PG FUNCTION INFO V1 sets up the argument passing
conventions to the function, and the GETARG macros let you get
arguments passed in. The RETURN macros let you return different
datatypes as datums (generic pointers).



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

A Basic Trigger Example

https:

//www.postgresql.org/docs/12/trigger-example.html

https://www.postgresql.org/docs/12/trigger-example.html
https://www.postgresql.org/docs/12/trigger-example.html


Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Trigger Gotchas

• Cached plans may be invalid

• Cached plans may be null

• Must use CALLED AS TRIGGER(fcinfo)



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Basic Types

Why?

• Manage alignment

• Save space

• Do cool things (see Heikki’s talk on Wednesday!)



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Pass by Value Basics

• Every type has a stored representation

• Every type has a human representation

• The two are not necessarily the same.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Code Example

• https://github.com/adjust/pg-country/

https://github.com/adjust/pg-country/


Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Advanced Types Basics

• Often Variable Length

• Pass by references instead of value



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

The Variable Length Header

• Variable length means we have to know the length before
reading.

• This means we have to pass in a variable length attribute
(varlena) header.

• Cannot just pass in a struct and expect it will work.



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Pass By Reference Gotchas

• Not safe to modify value in pass-by-reference types

• Much more programming discipline required

• Heavier use of in/out/send/receive functions



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Aggregate Example

https://github.com/wulczer/first_last_agg

https://github.com/wulczer/first_last_agg


Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Aggregate Gotchas

• DO NOT MODIFY pass-by-ref data!

• Possible to operate in wrong memory context

• ALWAYS test with –enable-cassert!



Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Kafka FDW

https://github.com/adjust/kafka_fdw

https://github.com/adjust/kafka_fdw


Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Parquet FDW

https://github.com/adjust/parquet_fdw

https://github.com/adjust/parquet_fdw


Introduction Memory Functions Basic Types Advanced Types Aggregates Foreign Data Wrappers Thanks

Thank You

Thank you all for coming.
Comments? Email me: chris.travers@adjust.com


	Introduction
	About
	Why C?
	Problems with C

	How Memory is Managed in PostgreSQL
	Basics
	Best Practices
	Advanced Operations
	Conclusion
	Conclusions

	Functions
	Basics

	Basic Types
	Advanced Types
	Advanced Types

	Aggregates
	aggregates

	Foreign Data Wrappers
	Examples

	Thanks
	Thanks


