
Introduction Theory Indexes Ordering Scans Increments Conclusions

Crazy Things You Can Do With PostgreSQL
Indexes

Chris Travers

March 28, 2023

Introduction Theory Indexes Ordering Scans Increments Conclusions

About Me

I have around twenty four years of experience with PostgreSQL and
databases in many roles – developer, database hacker, dba, and
more. I love PostgreSQL’s versatility.

Introduction Theory Indexes Ordering Scans Increments Conclusions

About This Talk

• Theory and practice

• Three scenarios with solutions

• Discussions of costs on these scenarios

Introduction Theory Indexes Ordering Scans Increments Conclusions

Theory: Functions

Discrete Math Definitions Made Simple:

• Relations are sets of corresponding facts. They are
correlations.

• Functions are relations where the domain is unique. They are
inferences.

Relational databases are, as Codd put it, inferential systems so
they effectively work based on functions. Second Normal Form
means that all tables in a database are functions.

Introduction Theory Indexes Ordering Scans Increments Conclusions

Derived Data

Although tables can be functions, some functions can also be
calculated. These include data derived from data in a row:

• area of a postgis geometry type can be calculated: ST Area()

• length of a string can be calculated.

• a lower case string is a function of an input string

• defined substrings can also be calculated.

Introduction Theory Indexes Ordering Scans Increments Conclusions

Referential Transparency and Immutable Functions

To be used in this way a function must be referentially transparent:

• It must be deterministic, and

• It cannot have side effects

Introduction Theory Indexes Ordering Scans Increments Conclusions

BTrees

Image taken from cstack’s db tutorial
(https://github.com/cstack/db_tutorial/)

https://github.com/cstack/db_tutorial/

Introduction Theory Indexes Ordering Scans Increments Conclusions

Advanced Indexing Capabilities in PostgreSQL

• Expression or functional indexes

• Partial indexes

• Index-only scans

• Many more index structures besides btrees

• queries with order by and limit can use indexes for this

Introduction Theory Indexes Ordering Scans Increments Conclusions

Rodering on Derived Data

• Large table of documents, each document has a ”content“
field and a ”database“ field

• Each document’s content has a format depending on the
value of the ”database“ field

• Want to sort documents in the ’patent‘ database based on a
date extracted from the ”content“ field

• Only around 10% of records need this

Introduction Theory Indexes Ordering Scans Increments Conclusions

Options that Don’t Work

• Reprocess whole table with a worker

• Sort documents in the front end

Introduction Theory Indexes Ordering Scans Increments Conclusions

With a Function and Index

• PL/Perl immutable function that extracts and returns the
date signature is patent date(document) returns date

• Index the output of the function

• Integrate this into the front-end

Introduction Theory Indexes Ordering Scans Increments Conclusions

Example

CREATE OR REPLACE FUNCTION patent_date(document)

RETURNS date LANGUAGE PLPERL AS ...;

CREATE INDEX doc_patent_date on document

(protein_id, patent_date(document))

where doctype = ’patentd’;

Introduction Theory Indexes Ordering Scans Increments Conclusions

Downsides to Approach

• Requires integration with the ORM layer

• Modifying the function requires a reindex operation

Introduction Theory Indexes Ordering Scans Increments Conclusions

Leveraging Index-Only Scans in Join Traversal

• Life sciences database

• Want to implement row-level security to reduce access

• Permissions added on two tables.

• Enforcing permissions requires traversing joins against up to
five tables

Introduction Theory Indexes Ordering Scans Increments Conclusions

Diagram of main tables

Introduction Theory Indexes Ordering Scans Increments Conclusions

Disregarded options

• Accept poor performance

• Replicate data to all tables

Introduction Theory Indexes Ordering Scans Increments Conclusions

Solution using Index Only Scans

• Identify join order needed for enforcement

• For each traversed table, create index with (foreign key,
primary key)

Introduction Theory Indexes Ordering Scans Increments Conclusions

Downsides of This Solution

• Difficult to reason about

• You are tied to a join order

• Accommodating multiple join orders incurs extra write
overhead

Introduction Theory Indexes Ordering Scans Increments Conclusions

Scenario

• Large distributed data warehouse environment

• On point of entry nodes, data gets digested and sent only once

• But on updates we need the difference.....

• Processing is based on batches

Introduction Theory Indexes Ordering Scans Increments Conclusions

Options Ruled Out

• Indexing all of the data (multiple TB)

Introduction Theory Indexes Ordering Scans Increments Conclusions

Solution with Partial Index

• Trigger updates a ”materialized” flag

• Partial index where ”materialized” is false

• vacuum keeps index small and clean

Introduction Theory Indexes Ordering Scans Increments Conclusions

Downsides to this Solution

• Need to be aware the index is only for one application, not for
the whole data.

• Otherwise worked well

Introduction Theory Indexes Ordering Scans Increments Conclusions

Conclusions

• Advanced index functions are really usefun

• They allow you to do things you couldn’t do before

• But they complicate troubleshooting and performance
awareness

• As always, power tools are ineligent where hand tools will
suffice

Introduction Theory Indexes Ordering Scans Increments Conclusions

Thanks to

• Novozymes AB and Adjust GmbH for where I got this
experience

Introduction Theory Indexes Ordering Scans Increments Conclusions

Questions

Questions?

	Introduction
	Some Basic Theory
	Indexing in PostgreSQL
	Ordering on Derived Data
	Leveraging Index-Only Scans in Join Traversal
	Incremental Updates
	Conclusions

