title

text

February 03 – 05 , 2016

PgConf.Russia 2016

Postrelease

  • more than
    0 participants
  • 0 speakers
  • 0
    minutes of conversation
  • 60 talks
  • offline
    format

Talks

Talks archive

PgConf.Russia 2016
  • Kevin  Grittner
    Kevin Grittner EnterpriseDB

    Whenever multiple users, processes, or threads are concurrently modifying data which is shared among them, problems can occur if race conditions are not handled somehow. These problems are particularly acute in a database which provide ACID semantics. A set of changes grouped into a database transaction must appear atomically, both to concurrent transactions and in terms of crash recovery. Each transaction must move the database from one consistent state (with regard to business rules) to another. For programming efficiency, each transaction must be able to be coded independently of what other transactions may happen to be running at the same time. In the event of a crash, all modifications made by transactions for which the application was notified of successful completion, and all modifications which had become visible to other transactions, must still be completed upon crash recovery. Over the years, various strategies have been employed to provide these guarantees, and sometimes the guarantees have been compromised in one way or another. This talk will cover the approaches taken to provide these guarantees or compromised variations of them, with an emphasis on the Serializable Snapshot Isolation (SSI) technique available in PostgreSQL (and so far not in any other production product). While SSI already performs faster and with higher concurrency than any other technique for managing race conditions with most common workloads, there are many opportunities for further enhancing performance, some of which would require the assistance of people expert in the various index access methods; these issues will be discussed. The talk will also present some rough ideas about how SSI techniques might be used with XTM in a distributed system.

    Time will be reserved at the end of the talk for group discussion of optimizations and possible application in distributed environments.

  • Marco Slot
    Marco Slot Citus Data

    CitusDB is an extension for PostgreSQL that can distribute tables across a cluster of PostgreSQL servers. Data is stored in shards that can use append-partitioning for bulk-loading of time series data or hash-partitioning for real-time data ingestion. SELECT queries on distributed tables are transparently parallelised across the cluster, using all available cores. Distributed tables can also be joined in parallel, even if they are not partitioned along the same column. CitusDB is especially suitable for real-time analytics use-cases such as dashboards which require fast analytical queries over live data, and can simultaneously act as a scalable operational database. This talk will describe the internals of CitusDB and give a live demo of a large-scale CitusDB cluster.

  • Kamil Islamov
    Kamil Islamov Stickeroid Ai

    Method of automated refresh of preprocessed results of analytis reports is provided. Preprocessing and caching of reports allows ability for fast response for big data reports. Author describes the way of reports cache refreshing with minimum server loads and tuned actualization rate.

  • Никита Волков
    Никита Волков Sannsyn AS

    This talk will cover "hasql", a highly-efficient library for integration of Haskell and PostgreSQL. The library provides an API for declarative programming, which is also quite flexible and terse. The talk will cover the benefits of declarative programming as well as the architectural and technical solutions behind the library, including the implementation of the PostgreSQL binary protocol. Hasql is used in PostgREST, a popular modern restful API for Postgres.

All talks