Postrelease
Talks
Talks archive
-
Fabio Telles Rodriguez TimbiraChallenges and solutions found in documents dematerialization and bank cheque processing system used in the Bank of Brazil.
-
Andreas Scherbaum Pivotal LtdGreenplum is a PostgreSQL fork, optimized for Analytics and Data Warehouse use cases. Pivotal announced in early 2015 that a number of products will go Open Source, one of them is Greenplum Database. This talk provides an overview over the history of Greenplum, the entire process of bringing the product into Open Source, all the stumbling blocks we ran into, and explains how contributors can participate.
-
Dmitry Melnik ISP RASCurrently, PostgreSQL uses the interpreter to execute SQL-queries. This yields an overhead caused by indirect calls to handler functions and runtime checks, which could be avoided if the query were compiled into the native code "on-the-fly" (i.e. JIT-compiled): at a run time the specific table structure is known as well as data types used in the query. This is especially important for complex queries, which performance is CPU-bound. At the moment there are two major projects that implement JIT-compilation in PostgreSQL: a commercial database Vitesse DB and an open-source project PGStorm. The former uses LLVM JIT to achieve up to 8x speedup on selected TPC-H benchmarks, while the latter JIT-compiles the query using CUDA and executes it on GPU, which allows to speed up execution of specific query types by an order.
Our work is dedicated to adding support for SQL query JIT-compilation to PostgreSQL using LLVM compiler infrastructure. In the presentation we'll discuss how JIT-compilation can be used to speed up various stages of query execution in PostgreSQL, and the specifics of translating an SQL query into LLVM bitcode to achieve good performing native code. Also we'll present preliminary results for our JIT-compiler on TPC-H benchmark.
-
Dmitry Vasiliev PostgresProThe talk describes performance benchmarking results of PostgreSQL on modern Hi-End servers. The main attention was paid to the locks for shared data access and associated bottlenecks. The testing propose was to test the linear read scalability limits with an increase of cores number allocated for PostgreSQL. Testing was performed for different postgres versions (9.4, 9.5, 9.6) to check new features designed to increase performance on multiprocessing architectures.
Photos
Photo archive