Postrelease
Talks
Talks archive
-
Hyungjoo Lee BitnineThe Korean PostgreSQL User Group has been relatively small and inactive for many years. However, recently things are changing in Korea. Companies are seeking to alternatives for their expensive proprietary RDBMS in order to cut their TCO. And the government institutes also participate in this trend. We, Bitnine, are leading these changes in Korea. We launched the first version of our PostgreSQL solution, Agens SQL in 2015. We are translating the PostgreSQL documentation into Korean and operating the PostgreSQL User Group. And we are trying to contribute the PostgreSQL Global Development Group. Also, the first Korean PostgreSQL Conference will be hold in 2016. We will lead the organization of this conference. In this talk, we will present the current status of the Korean PostgreSQL User Group and the PostgreSQL DBMS market in Korea. And we also present our activities in Korea and introduce our successful migration cases of the proprietary RDBMS into PostgreSQL.
-
Vladimir Sitnikov Pgjdbc, JMeter committerCommon Java wisdom is to use PreparedStatements and Batch DML in order to achieve top performance. It turns out one cannot just blindly follow the best practices. In order to get high throughput, you need to understand the specifics of the database in question, and the content of the data.
In the talk we will see how proper usage of PostgreSQL protocol enables high performance operation while fetching and storing the data. We will see how trivial application and/or JDBC driver code changes can result in dramatic performance improvements. We will examine how server-side prepared statements should be activated, and discuss pitfalls of using server-prepared statements.
-
Ronan Dunklau DaliboMulticorn is a generic Foreign Data Wrapper which goal is to simplify development of FDWs by writing them in Python.
We will see:
- what is an FDW what Multicorn is trying to solve how to use it, with a brief tour of the FDWs shipping with Multicorn.
- how to write your own FDW in python, including the new 9.5 IMPORT FOREIGN SCHEMA api.
- the internals: what Multicorn is doing for you behind the scenes, and what it doesn't
After a presentation of FDWs in general, and what the Multicorn extension really is, we will take a look at some of the FDWs bundled with Multicorn.
Then, a complete tour of the Multicorn API will teach you how to write a FDW in python, including the following features:
- using the table definition
- WHERE clauses push-down
- output columns restrictions
- influencing the planner
- writing to a foreign table
- IMPORT FOREIGN SCHEMA
- ORDER BY clauses pushdown
- transaction management
This will be a hands-on explanation, with code snippets allowing you to build your own FDW in python from scratch.
-
Alvaro Hernandez 8KdataJava is the most used programming language in the world. Yet how is it supported in PostgreSQL? What are the gotchas and the best practices? Now that Java is evolving significantly, how will PostgreSQL follow?
Despite Java's age, language is stronger than ever. It's the de facto programming language in the enterprise world. And since Java 8, it is having a come back in the startup and open source world. PostgreSQL is accessed more from Java than any other interface but, how's Java supported in PostgreSQL?
This talk will analyze how it has been in the past, but more importantly how can you use it and what can you do today. JDBC drivers, best practices, pl/java and other less frequently used tools will be presented and discussed.
And then we will look into the future, to see what is currently under development. Like Phoebe, a new Java Reactive Driver for PostgreSQL that targets clusters, pipelined queries and non-JDBC interface for fully asynchronous operation. And also what needs to be done in areas like server-side Java, to bring Java to a fully advanced first-level language within PostgreSQL.
Photos
Photo archive