title

text

February 03 – 05 , 2016

PgConf.Russia 2016

Postrelease

  • more than
    0 participants
  • 0 speakers
  • 0
    minutes of conversation
  • 60 talks
  • offline
    format

Talks

Talks archive

PgConf.Russia 2016
  • Ronan Dunklau
    Ronan Dunklau Dalibo

    Multicorn is a generic Foreign Data Wrapper which goal is to simplify development of FDWs by writing them in Python.

    We will see:

    • what is an FDW what Multicorn is trying to solve how to use it, with a brief tour of the FDWs shipping with Multicorn.
    • how to write your own FDW in python, including the new 9.5 IMPORT FOREIGN SCHEMA api.
    • the internals: what Multicorn is doing for you behind the scenes, and what it doesn't

    After a presentation of FDWs in general, and what the Multicorn extension really is, we will take a look at some of the FDWs bundled with Multicorn.

    Then, a complete tour of the Multicorn API will teach you how to write a FDW in python, including the following features:

    • using the table definition
    • WHERE clauses push-down
    • output columns restrictions
    • influencing the planner
    • writing to a foreign table
    • IMPORT FOREIGN SCHEMA
    • ORDER BY clauses pushdown
    • transaction management

    This will be a hands-on explanation, with code snippets allowing you to build your own FDW in python from scratch.

  • Gregory Stark
    Gregory Stark

    When new versions of Postgres are released most of the attention is focused on new features. Inevitably a release note claiming speed improvements seems relatively mundane and doesn't provide the compelling argument for upgrading. However the reality is that these speed improvements represent pain points that have been identified and solved.

    Reviewing the changes to the sort code in Postgres over the last 10 years clearly shows the kinds of problems users have run into. As usage patterns changed over years, databases scaled up, and hardware changed new problems arose and drove further development to solve them.

    Upcoming changes in 9.5 and 9.6 will dramatically change the experience further. Making sorting UTF8 and other encodings less of a problem and handling scaling to larger machines with many processors and memory cache more effectively.

  • Andres  Freund
    Andres Freund Citus Data

    Postgresql's buffer manager has parts where it's showing its age. We'll discuss how it currently works, what problems there are, and what attempts are in progress to rectify its weaknesses.

    • Lookups in the buffer cache are expensive
    • The buffer mapping table is organized as a hash table, which makes efficient implementations of prefetching, write coalescing, dropping of cache contents hard
    • Relation extension scales badly
    • Cache replacement is inefficient
    • Cache replacement replaces the wrong buffers

  • Michael  Paquier
    Michael Paquier

    A backup is something that no Postgres deployments should go without as it gives the insurance to get back a deployment on its feet should a disaster strike.

    In this talk we will discuss why backups are essential in any sane PostgreSQL deployments (this seems obvious) and what are the different options available to define and set up a good backup strategy. On top of that is discussed how the future of backups would need to be handled, particularly regarding differential backups that gain in popularity among users with large deployments.

All talks