February 05 – 07 , 2018
PGConf.Russia 2018
PGConf.Russia 2018
PGConf.Russia is a leading Russian PostgreSQL international conference, annually taking together more than 500 PostgreSQL professionals from Russia and other countries — core and software developers, DBAs and IT-managers. The 3-day program includes training workshops presented by leading PostgreSQL experts, more than 40 talks, panel discussions and a lightning talk session.
Thems
- PostgreSQL at the cutting edge of technology: big data, internet of things, blockchain
- New features in PostgreSQL and around: PostgreSQL ecosystem development
- PostgreSQL in business software applications: system architecture, migration issues and operating experience
- Integration of PostgreSQL to 1C, GIS and other software application systems.
Talks
Talks archive
-
Darafei Praliaskouski JunoPostGIS is a spatial extension to PostgreSQL that enables spatial datatypes, access methods and a set of functions to perform geometric operations on them.
Typically PostGIS is used to select a small subset of a big static dataset. In this talk I'll cover issues that arise when working with big dynamic data flows, and ways to resolve them, on examples that we've met developing Juno ride sharing service backend.
-
Dmitry Cremer Federal State Unitary Enterprise Rossiya SegodnyaA database is one of the key components in any information system, requiring the monitoring of multiple metrics. The talk highlights examples and approaches of monitoring and analysis of PostgreSQL performance that allow to minimize the load on the database server from the monitoring and data collection system for the subsequent analysis of problem situations.
- Quantum effects or as an observer affect the observed system
- Features of collecting metrics while monitoring the database with Zabbix
- Data collection for analytics and visualization PostgreSQL queries with rsyslog + kafka + clickhouse + grafana
- Operational Analysis Tools for DB loglile
-
Konstantin Knignik PostgresProPostgreSQL looks very competitive with other mainstream databases on OLTP workload (execution of large number of simple queries). But on OLAP queries, requiring processing of larger volumes of data, DBMS-es oriented on analytic queries processing can provide an order of magnitude better speed. The following factors limit Postgres OLAP performance:
- Unpacking tuple overhead (tuple_deform)
- Interpretation overhead (Postgres executor has to interpret query execution plan)
- Abstraction penalty (support of abstract data types)
- Pull model overhead (operators are pulling tuples from heap page one-by-one, resulting numerous repeated accesses to the page)
- MVCC overhead (extra per-tuple storage + visibility check cost)
All this issues can be solved using vectorized executor, which proceed bulk of values at once. In this presentation I will show how vector operations can be implemented in Postgres as standard Postgres extension, not affecting Postgres core. The approach is based on introducing special types: tile types, which can be used instead of normal (scalar) types and implement vector operations. Postgres extension mechanism, such as UDT (user-defined type), FDW (foreign data wrappers), executor hooks are used to let users work with vectorized tables almost in the same way as with normal tables. But more than 10 times faster because of vector operations.
-
Bruce Momjian EnterpriseDBDevelopers are often challenged to deliver results that are hard to implement using simple SQL queries. Fortunately, complex SQL capabilities exist in the SQL standards — common table expressions and window functions.
SQL is a declarative language, meaning the user submits an SQL command and the database determines the optimal execution. Common Table Expressions (CTEs) allow queries to be more imperative, allowing looping and processing hierarchical structures that are normally associated only with imperative languages.
Normal SQL queries return rows where each row is independent of the other returned rows. SQL window functions allow queries to return computed columns based on values in other rows in the result set.
This tutorial will help developers use CTE queries in their applications and allow operations that normally could only be done in application code to be done via SQL queries. It also explains the many window function facilities and how they can be used to produce useful SQL query results.
Video
Part I «Programming the SQL Way with CTE»
Part II «Postgres Window Magic»
Photos
Photo archive