title

text

February 05 – 07 , 2018

PGConf.Russia 2018

PGConf.Russia is a leading Russian PostgreSQL international conference, annually taking together more than 500 PostgreSQL professionals from Russia and other countries — core and software developers, DBAs and IT-managers. The 3-day program includes training workshops presented by leading PostgreSQL experts, more than 40 talks, panel discussions and a lightning talk session.

Thems

  • PostgreSQL at the cutting edge of technology: big data, internet of things, blockchain
  • New features in PostgreSQL and around: PostgreSQL ecosystem development
  • PostgreSQL in business software applications: system architecture, migration issues and operating experience
  • Integration of PostgreSQL to 1C, GIS and other software application systems.
  • more than
    0 participants
  • 0 speakers
  • 0
    minutes of conversation
  • 54 talks
  • offline
    format

Talks

Talks archive

PGConf.Russia 2018
  • Sergei Starikov
    Sergei Starikov Knopka
    Konstantin Khomyakov
    Konstantin Khomyakov Knopka

    «KNOPKA» («The button»), the largest outsourcing of accounting, will tell you about your experience of transferring 500Gb of 1C Fresh databases to PostgreSQL. The report touches on the choice of DBMS and the fight against stereotypes, where we started and how developed the use of PostgreSQL, the approaches to backup and recovery of information security, our current performance of DBMS and 1C, a look into the future. Let us share why we believe that 1C + PostgreSQL is simple, reliable and fast.

  • Ivan Panchenko
    Ivan Panchenko PostgresPro

    Tutorial on Full Text Seach in PostgreSQL, containing all recent improvemets. All recipies necessary for building an application will be given: dictionary and parser configuration, faceted search, fuzzy search, multilanguage search, ranking etc. Participants will be provided with a test database for exercises.

  • Wiktor Brodło
    Wiktor Brodło Adjust GmbH

    In this talk, I will tell you the story of how a bunch of sysadmins got sick of having to resuscitate their petabyte-sized Elasticsearch cluster and decided to replace it with some tried technologies: PostgreSQL, Kafka, a bit of Redis, lots of glue, and the typical sysadmin stubbornness. The result is Bagger: the sysadmin answer to Big Data. A fast, fairly reliable, fault-tolerant store, used mostly for logging timestamped events for some amount of time. Bagger is named the Bagger series of bucket-wheel excavators, feats of German engineering and some of the largest land vehicles ever produced by man. Just like the excavators that dig through tons of material, our Bagger digs through tons data.

  • Konstantin Knignik
    Konstantin Knignik PostgresPro

    PostgreSQL looks very competitive with other mainstream databases on OLTP workload (execution of large number of simple queries). But on OLAP queries, requiring processing of larger volumes of data, DBMS-es oriented on analytic queries processing can provide an order of magnitude better speed. The following factors limit Postgres OLAP performance:

    • Unpacking tuple overhead (tuple_deform)
    • Interpretation overhead (Postgres executor has to interpret query execution plan)
    • Abstraction penalty (support of abstract data types)
    • Pull model overhead (operators are pulling tuples from heap page one-by-one, resulting numerous repeated accesses to the page)
    • MVCC overhead (extra per-tuple storage + visibility check cost)

    All this issues can be solved using vectorized executor, which proceed bulk of values at once. In this presentation I will show how vector operations can be implemented in Postgres as standard Postgres extension, not affecting Postgres core. The approach is based on introducing special types: tile types, which can be used instead of normal (scalar) types and implement vector operations. Postgres extension mechanism, such as UDT (user-defined type), FDW (foreign data wrappers), executor hooks are used to let users work with vectorized tables almost in the same way as with normal tables. But more than 10 times faster because of vector operations.

All talks

Partners

PGConf.Russia 2018

Silver

Organizational

Informational

Partner