PGConf.Russia 2018
PGConf.Russia – международная техническая конференция по открытой СУБД PostgreSQL, ежегодно собирающая более 500 разработчиков, администраторов баз данных и IT-менеджеров для обмена опытом и профессионального общения. В программе – мастер-классы ведущих мировых экспертов, доклады в три тематических потока, примеры лучшего опыта и разбор ошибок, гостиная разработчиков и блиц-доклады из зала.
Темы встречи
- PostgreSQL на переднем крае: большие данные, интернет вещей, блокчейн
- новое в PostgreSQL и вокруг: развитие PostgreSQL и его экосистемы
- PostgreSQL в реальных системах: архитектура, миграция, эксплуатация
- Использование PostgreSQL в платформе 1С
- PostgreSQL в геоинформационных системах (GIS)
Доклады
Архив докладов
-
Álvaro Hernández OnGres FounderIt’s 3am. Your phone rings. PostgreSQL is down, you need to promote a replica to master. Why the h**l isn’t this automatic?
If you thought of this before, you want automatic High Availability (HA). Don’t miss this talk! We will enter the world of Modern PostgreSQL HA.
Good news, there are several new, “modern” solutions for PostgreSQL HA. However, there are several solutions and it's not easy to pick one. Most require non-trivial setups, and there are many small caveats about HA like how to provide entry points to the application, HA correctness, HA vs. read scaling, external dependencies, interaction with cloud environments, and so forth.
Join this talk to master PostgreSQL HA and how to deploy it on current times.
-
Алексей Клюкин Zalando SE Database Engineer
Александр Кукушкин Zalando SE Database EngineerPatroni - это Python-приложение для создания высокодоступных PostgreSQL кластеров на основе потоковой репликации. Оно используется такими компаниями как Red Hat, IBM Compose, Zalando и многими другими. С его помощью можно преобразовать систему из ведущего и ведомых узлов (primary - replica) в высокодоступный кластер с поддержкой автоматического контролируемого (switchover) и аварийного (failover) переключения. Patroni позволяет легко добавлять новые реплики в существующий кластер, поддерживает динамическое изменение конфигурации PostgreSQL одновременно на всех узлах кластера и множество других возможностей, таких как синхронная репликация, настраиваемые действия при переключении узлов, REST API, возможность запуска пользовательских команд для создания реплики вместо pg_basebackup, взаимодействие с Kubernetes и т.д.
Слушатели мастер-класса подробно узнают, как работает Patroni, получат практические навыки настройки высокодоступных кластеров на его основе, познакомятся с различными дополнительными возможностями и поучаствуют в диагностике проблем. Будут рассмотрены следующие темы:
- область применения: какие задачи HA успешно решаются Patroni
- обзор архитектуры
- создание тестового кластера
- утилита patronictl
- изменение конфигурации PostgreSQL для кластера, управляемого Patroni
- мониторинг с помощью API
- подходы к переключению клиентов
- дополнительные возможности: ручное переключение, перезагрузка по расписанию, режим паузы
- настройка синхронной репликации
- расширяемость и универсальность
- частые ошибки и их диагностика
Для полного участия в мастер-классе вам понадобится ноутбук с установленным git, vagrant и virtual box.
Vagrant можно загрузить со страницы https://www.vagrantup.com или установить с помощью пакетов в вашем дистрибутиве. Virtualbox: https://www.vagrantup.com
После установки Vagrant и Virtualbox нужно выполнить:
$ git clone https://github.com/alexeyklyukin/patroni-training $ cd patroni-training $ vagrant up
После того, как patroni box поднимется и установит необходимые пакеты к нему можно подключиться с помощью vagrant ssh.
-
Иван Фролков Postgres Professional инженер-консультантНередко требуется выполнить асинхронно не одну транзакцию, а несколько в строго определенной последовательности. Для реализации подобного рода задач существует несколько решений, и одной из них - модуль pgpro_scheduler.
-
Olivier Courtin DataPink Owner & DataScientistНа мастер-классе будут рассмотрены: продвинутый анализ пространственных данных на чистом PostGIS, включая новейшие функции PostGIS; приведение в соответствие разных типов данных в PostgreSQL и Python (массивы в NumPy, таблицы в Pandas); секреты эффективной работы с инструментами и средами обработки данных (Jupyter, dataviz и др.); дальнейшее развитие с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.
Фотографии
Архив фотографий