PGConf.Russia 2018
PGConf.Russia – международная техническая конференция по открытой СУБД PostgreSQL, ежегодно собирающая более 500 разработчиков, администраторов баз данных и IT-менеджеров для обмена опытом и профессионального общения. В программе – мастер-классы ведущих мировых экспертов, доклады в три тематических потока, примеры лучшего опыта и разбор ошибок, гостиная разработчиков и блиц-доклады из зала.
Темы встречи
- PostgreSQL на переднем крае: большие данные, интернет вещей, блокчейн
- новое в PostgreSQL и вокруг: развитие PostgreSQL и его экосистемы
- PostgreSQL в реальных системах: архитектура, миграция, эксплуатация
- Использование PostgreSQL в платформе 1С
- PostgreSQL в геоинформационных системах (GIS)
Доклады
Архив докладов
-
Olivier Courtin DataPink Owner & DataScientistНа мастер-классе будут рассмотрены: продвинутый анализ пространственных данных на чистом PostGIS, включая новейшие функции PostGIS; приведение в соответствие разных типов данных в PostgreSQL и Python (массивы в NumPy, таблицы в Pandas); секреты эффективной работы с инструментами и средами обработки данных (Jupyter, dataviz и др.); дальнейшее развитие с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.
-
WWiktor Brodło Adjust GmbH Системный администратор
В своем выступлении я расскажу о том, как группа сисадминов набила шишки, пытаясь реанимировать петабайтный кластер баз данных Elasticsearch, и в конце концов решила заменить его проверенными технологиями: PostgreSQL, Kafka, немного Redis, много клея, и типичное сисадминское упрямство. Результатом стал Bagger - ответ сисадмина на вызов больших данных. Быстрое, надежное, устойчивое к отказам хранилище, используемое в основном для логирования временных событий. Bagger получил свое имя по названию серии ковшовых экскаваторов, одних из крупнейших наземных транспортных средств, когда-либо производимых человеком. Как эти экскаваторы прокапывают тонны материала, так и наш Bagger способен прокопаться через тонны данных.
-
Константин Книжник Postgres Professional Ведущий разработчикСУБД Постгрес успешно используется во многих OLTP приложениях, выполняющих большое число простых запросов. Но для аналитики, требующей обработки большого количества данных, Постгрес на порядки отстаёт от специализированных СУБД, оптимизированных для массовой обработки данных. Скорость работы Постгреса для OLAP запросов сдерживается следующими факторами:
- Большие накладные расходы на распаковку записей.
- Затраты на интерпретацию запроса (Постгрес интерпретирует план выполнения запроса)
- Поддержка работы с абстрактными типами
- Недостатки PULL модели выполнения запроса
- Издержки MVCC
Все эти проблемы могут быть в большой степени решены за счёт использования векторного исполнителя запросов, который за одну операцию в состоянии обработать целый блок (вектор) значений. В этом докладе описывается способ добавления векторных операций в Посгрес, с помощью стандартного механизма расширения Посгреса, без внесения изменений в ядро. Такие механизмы Посгреса как UDT (определяемые пользователем типы), FDW (абстракция внешнего поставщика данных), расширения исполнителя запросов позволяют реализовать в Постгресе вертикальный таблицы, с которыми можно работать как с обычными таблицами. Но на порядки быстрее благодаря использованию векторных операций.
-
Christopher Travers DeliveryHero SE Principle EngineerВ последние шесть месяцев я работал с массивным OLAP окружением, охватывающим порядка 400TB данных. Приходите и узнайте, как мы заставили это все работать, с какими трудностями сталкивались и какие навыки нам потребовались.
Этот доклад будет иметь мало общего с докладом про 10TB и выше, так как среды данных значительно отличаются. Мы рассмотрим эффективность аналитики, выравнивание данных, причины для разработки расширений на С, перемещение данных между серверами в нескольких центрах обработки данных.
Фотографии
Архив фотографий