title

text

PGConf.Russia 2018

PGConf.Russia – международная техническая конференция по открытой СУБД PostgreSQL, ежегодно собирающая более 500 разработчиков, администраторов баз данных и IT-менеджеров для обмена опытом и профессионального общения. В программе – мастер-классы ведущих мировых экспертов, доклады в три тематических потока, примеры лучшего опыта и разбор ошибок, гостиная разработчиков и блиц-доклады из зала.

Темы встречи

  • PostgreSQL на переднем крае: большие данные, интернет вещей, блокчейн
  • новое в PostgreSQL и вокруг: развитие PostgreSQL и его экосистемы
  • PostgreSQL в реальных системах: архитектура, миграция, эксплуатация
  • Использование PostgreSQL в платформе 1С
  • PostgreSQL в геоинформационных системах (GIS)
  • более
    0 участников
  • 0 докладчиков
  • 0
    минут общения
  • 54 доклада
  • оффлайн
    формат

Доклады

Архив докладов

PGConf.Russia 2018
  • Дмитрий Сарафанников
    Дмитрий Сарафанников Яндекс Разработчик

    Ни для кого не секрет, что статистика не переносится при мажорном обновлении. Для небольших и не сильно нагруженных баз это не проблема, можно быстро собрать новую статистику. Но у нас есть базы объемом порядка 5ТБ и нагрузкой порядка 100k rps, для которых это стало большой проблемой: взлетая без статистики, реплики даже не могли накатывать WAL. В своем докладе расскажу, на какие хитрости мы пошли, чтобы произвести обновление этих баз в условиях требований 100% доступности read only, о том, какие ошибки допустили, и о том как эти ошибки мучительно исправляли. Результатом этих ошибок стало расширение pg_dirty_hands, в котором мы будем собирать различные хаки, которые можно назвать «фол последней надежды».

  • Александр Коротков
    Александр Коротков Postgres Professional Руководитель разработки

    Соединяем доказуемость и неизменяемость блокчейна с производительностью и эффективностью традиционных СУБД.

    Технология блокчейн имеет ряд уникальных свойств, среди которых есть доказуемость и неизменямость. Каждая транзакция в блокчейне имеет цифровую подпись своего автора, которая может быть проверена любым участником сети. Кроме этого, однажды попавшие в блокчейн данные уже не могут быть изменены в дальнейшем. Тем не менее, для большинства современных информационных систем запись всех данных в публиный блокчейн оказалась бы слишком дорогой.

    Credereum – это платформа, которая позволяет создавать и поддерживать базы данных, содержимое и история которых доказуемы и неизменяемы, без принесения в жертву производительности и эффективности традиционных СУБД. Благодаря Credereum владелец базы данных может доказывать корректность результатов запроса, а пользователи могут их проверять. Владельцу базы данных не обязательно раскрывать всё содержимое базы данных или всю историю транзакций для того, чтобы доказывать корректность результатов отдельного запроса к базе данных. Таким образом, база данных Credereum подходит и для хранения приватной информации. Credereum использует передовые технологии, такие как децентрализованное облако и блокчейн с шардингом. Credereum – это зарождающаяся тенология приватных и доверенных баз данных.

    Мы объясним, почему PostgreSQL является подходящей основной для проекта Credereum, а также расскажем, что потребовалось доработать в постгресе для поддержки цифровых подписей и криптографического хранилища данных.

  • Алексей Клюкин
    Алексей Клюкин Zalando SE Database Engineer
    Александр Кукушкин
    Александр Кукушкин Zalando SE Database Engineer

    Patroni - это Python-приложение для создания высокодоступных PostgreSQL кластеров на основе потоковой репликации. Оно используется такими компаниями как Red Hat, IBM Compose, Zalando и многими другими. С его помощью можно преобразовать систему из ведущего и ведомых узлов (primary - replica) в высокодоступный кластер с поддержкой автоматического контролируемого (switchover) и аварийного (failover) переключения. Patroni позволяет легко добавлять новые реплики в существующий кластер, поддерживает динамическое изменение конфигурации PostgreSQL одновременно на всех узлах кластера и множество других возможностей, таких как синхронная репликация, настраиваемые действия при переключении узлов, REST API, возможность запуска пользовательских команд для создания реплики вместо pg_basebackup, взаимодействие с Kubernetes и т.д.

    Слушатели мастер-класса подробно узнают, как работает Patroni, получат практические навыки настройки высокодоступных кластеров на его основе, познакомятся с различными дополнительными возможностями и поучаствуют в диагностике проблем. Будут рассмотрены следующие темы:

    • область применения: какие задачи HA успешно решаются Patroni
    • обзор архитектуры
    • создание тестового кластера
    • утилита patronictl
    • изменение конфигурации PostgreSQL для кластера, управляемого Patroni
    • мониторинг с помощью API
    • подходы к переключению клиентов
    • дополнительные возможности: ручное переключение, перезагрузка по расписанию, режим паузы
    • настройка синхронной репликации
    • расширяемость и универсальность
    • частые ошибки и их диагностика

    Для полного участия в мастер-классе вам понадобится ноутбук с установленным git, vagrant и virtual box.

    Vagrant можно загрузить со страницы https://www.vagrantup.com или установить с помощью пакетов в вашем дистрибутиве. Virtualbox: https://www.vagrantup.com

    После установки Vagrant и Virtualbox нужно выполнить:

    $ git clone https://github.com/alexeyklyukin/patroni-training
    $ cd patroni-training
    $ vagrant up
    

    После того, как patroni box поднимется и установит необходимые пакеты к нему можно подключиться с помощью vagrant ssh.

  • Николай Рыжиков
    Николай Рыжиков Health Samurai CTO

    Если честно взглянуть на большинство наших бизнес-приложений, то они через провод собирают данные в базу и раздают их в обратном направлении. Что, если не пытаться воздвигать стену абстракций между приложением и базой данных (ORM), а постараться использовать их симбиоз - сильные стороны и индивидуальные особенности.

    Я расскажу как мы используем postgresql и clojure для создания data intensive приложений для медицины.

    • functional relational programming
    • jsonb для моделирования сложной предметной области
    • функциональные индексы и расширение json-knife для поиска в jsonb
    • реализация graphql на postgres
    • logical replication для построения реактивных интеграций
    • асинхронный JDBC-free коннектор к postgresql на netty

Все доклады

Партнёры

PGConf.Russia 2018

Серебряный партнёр

Организационный партнёр

Информационные партнёры

Партнёр