title

text

Антон Дорошкевич
Антон Дорошкевич Инфософт Руководитель отдела ИТ
13:00 06 февраля
45 мин

1С-Батл. PostgreSQL vs MS SQL

Сравнение возможностей PostgreSQL и MS SQL для работы с 1С. Что даёт pg_restore для 1С-ника. Результаты нагрузочного тестирования "Восстановления последовательности партионного учёта" на базе 1С размером более 1 ТБ. 2 года, 500+ баз 1С, 4ТБ данных, Каскадная репликация - История одного Production 1C

Слайды

Видео

Другие доклады

  • Алексей Лесовский
    Алексей Лесовский Data Egret PostgreSQL DBA
    45 мин

    Давайте отключим vacuum?!

    Такой призыв часто возникает, когда в PostgreSQL возникают проблемы, и главным подозреваемым оказывается vacuum. По опыту, многие наступают на эти грабли, и мне с коллегам по Data Egret нередко приходится разгребать последствия, так как потом всё становится ещё хуже. Но если обратить внимание на сам vacuum, то, пожалуй, нет такого человека, который бы использовал Postgres, и при этом ничего не знал про вакуум. Ведь история вакуума начинается относительно давно, и в интернете можно найти массу как старых, так и новых постов про вакуум, объемные дискуссии в списках рассылки. Несмотря на то, что тема вакуума подробно описана в официальной документации к PostgreSQL, новые посты и новые дискуссии будут появляться и дальше. Возможно, поэтому с вакуумом связано очень много мифов, баек, страшилок и заблуждений. Между тем, вакуум является одним из важнейших компонентов PostgreSQL, и его работа напрямую сказывается на производительности. В одном докладе невозможно рассказать про вакуум абсолютно всё, но я бы хотел раскрыть ключевые моменты, связанные с вакуумом, такие как его внутреннее устройство, основные подходы к его настройке, наблюдение за производительностью, мониторинг, и что делать в случае, когда вакуум - главный подозреваемый во всех бедах. Ну и, конечно же, хочется развеять распространенные мифы и заблуждения, связанные с вакуумом.

  • Иван Картышов
    Иван Картышов Postgres Professional Разработчик ядра
    Дмитрий Иванов
    Дмитрий Иванов Postgres Professional Developer
    22 мин

    Басня про тестирование и postgres

    Однажды вот Питон и Слон
    Вести тестирование взялись.
    И вместе все в него впряглись!

    В нашей компании (Postges Professional) разрабатываются разные проекты: multimaster, pg_probackup, pg_pathman, pg_shardman, RUM, и другие. Совладать со всей этой оравой весьма непросто, поэтому нам необходим инструмент, который способен облегчить и ускорить написание всевозможных тестов.

    В данном докладе мы расскажем о фреймворке testgres, написанном на Python, который уже позволил решить множество проблем и протестировать функциональность, которую нельзя так просто покрыть прямолинейными регрессионными тестами.

    Вы узнаете, как при помощи нескольких строчек кода запускать узлы PostgreSQL, настраивать всевозможную репликацию и создавать бекапы, меняя параметры на лету, и про многое другое. Также мы расскажем, как эти возможности позволяют нам проверять "самые труднодоступные места" и улучшать качество наших продуктов.

    Мы стремимся сделать testgres фреймворком для проведения функциональных тестов пользовательских запросов, хранимых процедур и прочей серверной логики, привнося практику TDD на уровнь разработки БД.

  • Константин Евтеев
    Константин Евтеев X5 FoodTech Главный архитектор
    Михаил Тюрин
    Михаил Тюрин ИТ предприниматель предприниматель
    45 мин

    Кейсы использования логической репликации для восстановления данных в PostgreSQL 10

    В Avito объявления хранятся в базах данных PostgreSQL. При этом уже на протяжении многих лет активно применяется логическая репликация. С помощью неё успешно решаются вопросы роста объема данных и количества запросов к ним, масштабирования и распределения нагрузки, доставки данных в DWH и поисковые подсистемы, межбазные и межсервисные синхронизации данных и пр.

    Но ничего не бывает "бесплатно" - на выходе мы имеем сложную распределенную систему. Отказы оборудования - это норма, к ним нужно быть готовым. Можно найти много примеров конфигурации логической репликации и success stories ее использования, при этом практических примеров по восстановлению после аварий почти нет, не говоря уже про готовые инструменты. За годы эксплуатации репликации PgQ мы наработали обширный опыт, многое переосмыслили, реализовали собственные надстройки и расширения для восстановления и согласования данных после аварий в распределенных системах обработки данных.

    В докладе мы покажем, как наш опыт можно переложить на новую подсистему логической репликации в 10-ке. В текущей реализации это нетривиальные решения – остается ряд вопросов для комьюнити, сводящихся к реализации простых механизмов восстановления - таких же простых как и настройка репликации в 10-ке.

  • Olivier Courtin
    Olivier Courtin DataPink Owner & DataScientist
    45 мин

    Продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python

    PostGIS на протяжении двух десятилетий завовевал известность как лучшее опенсорсное решение для анализа пространственных данных. В докладе я остановлюсь на продвинутом анализе пространственных данных с помощью PostGIS, расскажу о дальнейшем развитии с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.