1С-Батл. PostgreSQL vs MS SQL
Сравнение возможностей PostgreSQL и MS SQL для работы с 1С. Что даёт pg_restore для 1С-ника. Результаты нагрузочного тестирования "Восстановления последовательности партионного учёта" на базе 1С размером более 1 ТБ. 2 года, 500+ баз 1С, 4ТБ данных, Каскадная репликация - История одного Production 1C
Слайды
Видео
Другие доклады
-
Виктор Егоров Data Egret DBA
Сравнительный обзор архитектуры PostgreSQL и ORACLE
Доклад рассмотрит следующие компоненты СУБД PostgreSQL, сравнивая архитектурные решения с СУБД ORACLE:
- Что представляет из себя экземпляр работающей базы, какие процессы присутствуют и за что они отвечают?
- Какими структурами оперирует база?
- Механизм отказоустойчивости.
- MVCC механизм и возможности восстановления базы.
- Хранение базы на физических носителях.
Каждое из рассматриваемых решений будет оценено с точки зрения накопленного опыта работы в выбранных СУБД, удобства администрирования и доступных способов развития в будущем.
Доклад будет интересен:
- пользователям PostgreSQL, т.к. позволит взглянуть на другую СУБД и её особенности;
- администраторам PostgreSQL, т.к. ORACLE предлагает большие административные возможности, которые могли бы быть реализованы и в Postgres;
- разработчикам PostgreSQL, т.к. Postgres активно развивается и этот доклад может задать новые направления развития;
- желающим перейти с ORACLE (или другой СУБД) на проекты с открытым исходным кодом, т.к. доклад продемонстрирует возможности открытой СУБД Postgres в сравнении с коммерческим продуктом, в котором Postgres выглядит очень достойно!
-
WWiktor Brodło Adjust GmbH Системный администратор
Bagger: как мы мигрировали 1 PB данных с Elasticsearch на PostgreSQL
В своем выступлении я расскажу о том, как группа сисадминов набила шишки, пытаясь реанимировать петабайтный кластер баз данных Elasticsearch, и в конце концов решила заменить его проверенными технологиями: PostgreSQL, Kafka, немного Redis, много клея, и типичное сисадминское упрямство. Результатом стал Bagger - ответ сисадмина на вызов больших данных. Быстрое, надежное, устойчивое к отказам хранилище, используемое в основном для логирования временных событий. Bagger получил свое имя по названию серии ковшовых экскаваторов, одних из крупнейших наземных транспортных средств, когда-либо производимых человеком. Как эти экскаваторы прокапывают тонны материала, так и наш Bagger способен прокопаться через тонны данных.
-
Брюс Момжиан EnterpriseDB Senior Database Architect
Изучаем CTE и оконные функции
От разработчиков часто требуются результаты, которые трудно получить обычными SQL-запросами. К счастью, стандартом SQL предусмотрены мощные средства - общие табличные выражения (CTE) и оконные функции, который весьма расширяют круг возможного.
SQL является декларативным языком, что означает, что пользователь только формирует запрос, с база данных определяет, как его следует оптимально исполнять. CTE позволяют запросам быть более императивными, дают возможность организовать циклы и обработку иерархических структур, что обычно делается только в императивных языках.
Обычные SQL-запросы возвращают наборы строк, в которых одна строка не зависит от других. Оконные функции позволяют добавлять в запрос поля, значения которых зависят от других строк.
Этот мастер-класс поможет прикладным разработчикам в использовании CTE, что позволит перенести часть логики из приложения в SQL-код, и разъяснит возможности оконных функций и особенности их использования.
Видео
Часть I «Programming the SQL Way with CTE»
Часть II «Postgres Window Magic»
-
Иван Картышов Postgres Professional Разработчик ядраДмитрий Иванов Postgres Professional Developer
Басня про тестирование и postgres
Однажды вот Питон и Слон
Вести тестирование взялись.
И вместе все в него впряглись!В нашей компании (Postges Professional) разрабатываются разные проекты: multimaster, pg_probackup, pg_pathman, pg_shardman, RUM, и другие. Совладать со всей этой оравой весьма непросто, поэтому нам необходим инструмент, который способен облегчить и ускорить написание всевозможных тестов.
В данном докладе мы расскажем о фреймворке testgres, написанном на Python, который уже позволил решить множество проблем и протестировать функциональность, которую нельзя так просто покрыть прямолинейными регрессионными тестами.
Вы узнаете, как при помощи нескольких строчек кода запускать узлы PostgreSQL, настраивать всевозможную репликацию и создавать бекапы, меняя параметры на лету, и про многое другое. Также мы расскажем, как эти возможности позволяют нам проверять "самые труднодоступные места" и улучшать качество наших продуктов.
Мы стремимся сделать testgres фреймворком для проведения функциональных тестов пользовательских запросов, хранимых процедур и прочей серверной логики, привнося практику TDD на уровнь разработки БД.