title

text

PGConf.Russia 2024

PGConf.Russia – международная техническая конференция по открытой СУБД PostgreSQL, ежегодно собирающая более 900 разработчиков, администраторов баз данных и IT-менеджеров для обмена опытом и профессионального общения. В программе – доклады в три потока в течение двух дней, живое общение на кофе-брейках и фуршете.

Темы встречи

  • Эксплуатация СУБД. Опыт DBA.
  • Миграция на Postgres
  • Мониторинг и настройка СУБД
  • Отказоустойчивые и масштабируемые системы
  • Новости от разработчиков
  • более
    0 участников
  • 0 докладчиков
  • 0
    минут общения
  • 46 докладов
  • гибридный
    формат

Доклады

Архив докладов

PGConf.Russia 2024
  • Сергей Новиков
    Сергей Новиков ЕДИНЫЙ ЦУПИС Lead DBA

    В докладе представлен обобщённый опыт компании ЕДИНЫЙ ЦУПИС в вопросах оптимизации OLTP-запросов: • Как идентифицировать причины перегрузки сервера. • Какие настройки помогают улучшать планы и ускорять запросы, которые и так работают быстро. • Как лучше подготовить индексы и сами запросы. Также будут рассмотрены различные примеры деградации производительности из практики.

  • Андрей Черняков
    Андрей Черняков UIS, CoMagic Разработчик баз данных, техлид

    Мы долгое время катили релизы на базы данных руками. Но когда их количество стало больше 50, выкладывать релизы руками стало больно, даже при наличии скриптов. Стало понятно, что нужен какой-то инструмент. Так как готовые инструменты нам не подошли, мы решили написать свою систему на основе пайплайнов ci/cd в gitlab.

    В результате получилась удобная система работы с кодом: - автоматические проверки практически не дают сделать что-то не правильно (plpgsql_check, авто-тесты и т.д.) - исключается возможность расхождения кода в живой БД и в репозитории - включает в себя несколько утилит (написанных на python), которые можно использовать как в пайплайнах, так и непосредственно из консоли - поддерживаются два режима раскатки релизов: по кнопке из gitlab и полностью автоматический (по ключевому слову auto_deploy в сообщении к коммиту)

  • Владимир Сердюк
    Владимир Сердюк Общество с ограниченной ответственностью «Кластерные технологии Софтпоинт» Ген. директор

    Данный доклад представляет собой описание концепции и прототипа кластера СУБД, работающего по принципу Master-Master. Проблема синхронизации данных в таких системах ни в одном тиражном решении до сих пор не решена, поэтому масштабирование для OLTP-систем, где транзакционная нагрузка сильно превалирует над аналитической, решается до сих пор только усилением аппаратной части – добавить ядер/процессоров, добавить памяти, что зачастую бывает не самым рациональным решением. Напомню, что задача распределения аналитической нагрузки решается относительно просто с помощью создания дополнительных реплик и перенаправления запросов на чтение вне транзакций на другие реплики. В случае же транзакционной нагрузки, если применять аналогичный подход, возникают коллизии, например, типа «писатель-писатель», которые, если их не учитывать, могут привести к неверным данным в транзакциях. Концепция кластера распределённых вычислений на первый взгляд звучит просто: «Все запросы на изменение данных выполняются мгновенно на всех нодах (серверах кластера), а чтение выполняется локально». Специальный прокси-агент распарсивает запросы, и выполняет запросы на чтение локально, а запросы на изменение перенаправляются параллельно и асинхронно на все остальные ноды кластера. Все изменения выполняются в системе зеркальных распределённых транзакций , которыми управляет координатор распределённых транзакций. Несмотря на простоту концепции и формулировки, возникает множество технических проблем, которые нигде ранее не были решены. В случае высокого параллелизма и конкуренции ресурсов порядок запросов на разных серверах может изменяться, что, в свою очередь, может приводить к изменению состава данных и к распределенным взаимоблокировкам. Также возникают сложности с падением линейной скорости примитивных операций. И, не решив проблемы оптимизации, данное решение сразу не подойдет для большинства систем. Одними из целевых показателей промышленного решения будет являться подключение до 20-и серверов в кластер с линейной просадкой времени операций не более чем на 10 % .

    В докладе будут рассмотрены эти и другие проблемы распределено-вычислительного кластера. В том числе, представлены примеры системы, для которых это будет максимально эффективным решением, а также описание архитектуры и демонстрация прототипа.

  • Владлен Пополитов
    Владлен Пополитов Postgres Professional разработчик программного обеспечения

    В 2023 году было анонсировано рекордное количество новых векторных баз данных. Mы расскажем о феномене векторных баз данных, раскроем суть этого явления и продемонстрируем, как векторные СУБД решают проблему производительности операций с векторами больших размерностей, и что препятствует реляционным базам данных конкурировать с ними в настоящее время. Несмотря на общий интерес к векторным базам данных, есть мнение о том, что существующие реляционные СУБД скоро смогут эффективно поддерживать операции с многомерными векторами, сохраняя традиционно богатый функциональный набор, что особенно важно для корпоративных пользователей. Например, для PostgreSQL уже созданы несколько расширений для работы с многомерными векторами, таких как pgvector, diskann, а также несколько коммерческих вендоров PostgreSQL объявили о поддержке работы с векторами. Мы рассмотрим используемые в этих расширениях алгоритмы, остановимся на недостатках и покажем возможные пути их улучшения.

Все доклады