title

text

15 – 17 марта 2017

PgConf.Russia 2017

Пост-релиз

PGConf.Russia 2017 – третья конференция PgConf, прошедшая в Москве 15-17 марта 2017 г. На конференции было сделано около 60 докладов и проведено 7 мастер-классов. Конференцию посетило 550 человек. Слайды докладов конференции опубликованы, видеозаписи появятся в июне 2017 г.

Итоги конференции: Под созвездием Слона

Обзор докладов конференции

  • более
    0 участников
  • 0 докладчиков
  • 0
    минут общения
  • 63 доклада
  • оффлайн
    формат

Доклады

Архив докладов

PgConf.Russia 2017
  • Marco Slot
    Marco Slot Citus Data Главный инженер-программист

    Инструмент Citus позволяет распределять таблицы PostgreSQL между несколькими серверами. Расширяя возможности PostgreSQL в плане делегирования и распараллеливания задач между группой рабочих узлов, Citus позволяет горизонтально масштабировать CPU-ресурсы и память для выполнения запросов.

    Год назад мы ступили на долгий путь реализации в Citus возможности горизонтального масштабирования в новом измерении - для повышения скорости записи. Так как все запросы на запись обрабатывались через один узел PostgreSQL, скорость записи в Citus ограничивалась CPU-ресурсами одного узла. Citus MX - это новая версия Citus, которая предоставляет доступ к распределенным таблицам с любого узла, обеспечивая повышение скорости записи до уровня NoSQL решений.

  • Филипп Дельгядо
    Филипп Дельгядо ООО «Лектон» архитектор департамента

    Я очень люблю сложные предметные области, строгую типизацию в приложении и 3НФ, но очень не люблю ORM. Поэтому мне приходится активно использовать хранение сериализованных структур в json-полях (даже до появления типа json). В докладе расскажу о некоторых особенностях работы с хранением сложных объектов внутри полей СУБД, расскажу где и как подстелить себе соломку и какие проблемы могут возникнуть.

    ВИДЕО

  • Дмитрий Мельник
    Дмитрий Мельник ИСП РАН разработчик

    В данный момент в PostgreSQL для исполнения SQL-запросов применяется интерпретатор, реализующий модель итераторов (Volcano-модель). В то же время можно добиться существенного ускорения, выполняя динамическую компиляцию запроса «на лету». В этом случае можно генерировать код, специализированный для конкретного SQL-запроса, а также применять компиляторные оптимизации, учитывая, что во время выполнения уже известна структура используемых таблиц и типы данных. Такой подход особенно актуален для сложных запросов, скорость выполнения которых ограничена производительностью процессора.

  • Александр Кукушкин
    Александр Кукушкин Zalando SE Database Engineer

    В современном мире всё больше и больше IT компаний отказываются от традиционных способов хостинга и переносят свои ресурсы в облачные сервисы. Zalando не стала исключением. Взрывной рост компании и переход к модели микросервисов потребовал внести изменения в процесс деплоймента новых инстансов баз данных и решить проблему автоматического переключения в случае выхода мастера из строя. Большинство существующих решений для автоматического переключения требуют предварительной ручной настройки каждого узла до запуска кластера. Такой подход определенно неприемлем в облаках, где ты заранее не знаешь IP адресов всех узлов.

Все доклады