PGConf.Online 2021
PGConf.Russia – международная техническая конференция по открытой СУБД PostgreSQL, ежегодно собирающая более 700 разработчиков, администраторов баз данных и IT-менеджеров для обмена опытом и профессионального общения. Впервые проводится в онлайн-формате PGConf.Online.
Темы встречи
- PostgreSQL на переднем крае: большие данные, интернет вещей, блокчейн
- новое в PostgreSQL и вокруг: развитие PostgreSQL и его экосистемы
- PostgreSQL в реальных системах: архитектура, миграция, эксплуатация
- Использование PostgreSQL в платформе 1С
- PostgreSQL в геоинформационных системах (GIS)
Доклады
Архив докладов
-
Alicja Kucharczyk Microsoft EMEA Global Blackbelt OSS Data Tech Specialist
Sushant Pandey Microsoft 500032В данном рассказе мы хотим рассказать о том, как команда Microsoft, созданная из двух различных команд, работала над проектом, решала проблемы миграции, используя ora2pg, и смогла доказать, что Postgres Single Server может демонстрировать хорошую производительность наравне с Oracle Exadata. Мы расскажем о наших методах работы, а также о ряде основных проблем технического характера, с которыми мы столкнулись, включая миграцию выражений BULK COLLECT, иерархических запросов, курсорных выражений REF CURSOR и других, более сложных конструкций Oracle.
Наша история о практическом подтверждении гипотезы, которое доказало, что Postgres может демонстрировать такую же производительность, как Oracle Exadata. Схема мигрируемой БД была не самой простой. Скорее, наоборот. Код был нагружен динамическими запросами, выражениями BULK COLLECT, вложенными циклами, операторами CONNECT BY, глобальными переменными и множеством зависимостей. Инструмент Ora2pg очень помог нам с преобразованием схемы БД, но всё равно осталось много работы, которую можно было сделать только вручную. Оценки, которые мы получили благодаря инструменту, также оказались очень далеки от истины, поскольку требовалась не просто миграция кода, а изменение его архитектуры. В рамках нашего доклада мы рассмотрим следующие подтемы:
- Как (не) работают оценки
- Как мы справились с миграцией выражений BULK COLLECT
- Почему мы избавились от выражений REF CURSOR
- Как мы застряли на фазе тестирования одного из пакетов и как помощь друга помогла нам в решении этой проблемы.
- Как мы справились с иерархическими запросами и детализацией иерархии
-
Брюс Момжиан EnterpriseDB Senior Database ArchitectИскусственный интеллект, машинное обучение и глубокое обучение — это взаимосвязанные концепты, которые пытаются решить проблемы, бросающие вызов традиционным вычислительным решениям — с помощью них обнаруживают мошенничество, распознают голос и определяют релевантность результатов поиска. Несмотря на то, что они противостоят традиционному вычислению, они требуют больших вычислительных ресурсов — вплоть до вычисления миллионов вероятностей и весов. Хотя эти вычисления могут выполняться вне базы данных, машинное обучение внутри базы данных, близко к тому, где хранятся данные, даёт определенные преимущества. В этой презентации будет разъяснено, как выполнять машинное обучение в базе данных под управлением Postgres.
-
Andreas Scherbaum Pivotal Principal Software EngineerAnsible — открытый бесплатный инструмент для управления конфигурацией и развёртываниями, который можно применять для управления серверами и установленным на них программным обеспечением. В данном докладе мы вкратце обсудим сам Ansible, а затем объясним, как использовать его для установки и настройки PostgreSQL на сервере. Примеры будут демонстрироваться на протяжении всего доклада.
-
Kohei KaiGai HeteroDB Главный архитектор и генеральный директорВ рамках данного доклада мы представим GPU-версию PostGIS и индекса GiST, которую мы разработали в качестве новой функциональности PG-Strom.
Сегодня наши устройства (например, мобильные телефоны) динамически генерируют геолокационные данные. Это часто используют для маркетинга на основе местоположения устройства, доставки push-уведомлений, оповещения о чрезвычайных ситуациях, и так далее. Люди часто используют технологию GIS для получения данных о пользователях, находящихся в данный момент в данном месте. Даже если определения географических областей представляют собой сложные многоугольники, функции PostGIS могут генерировать правильные пересечения, однако это часто требует интенсивных вычислительных нагрузок. Графический процессор (GPU) был разработан для массовых параллельных вычислений с тысячами ядер на чип и более. Мы разработали расширение PG-Strom для частичного выполнения SQL-запросов на устройствах GPU. В новом релизе PG-Strom v3.0 будет добавлена поддержка для нескольких функций PostGIS и GiST-индексов для выполнения ресурсоёмких вычислений с обработкой геолокационных данных.
В рамках этого доклада мы расскажем о создании этой технологии, её использовании, реализации и представим результаты сравнительного тестирования для GPU-версии PostGIS и GiST-индекса.