1С:Предприятие + Постгрес = ...
В диалоге технического директора Postgres Professional, ведущего разработчика PostgreSQL Федор Сигаев и известного 1С-эксперта Антон Дорошкевич обсудят имеющиеся проблемы эксплуатации 1С на Постгресе и их возможные решения.
Видео
Другие доклады
-
Николай Самохвалов Nombox LLC Основатель
Бесшовная оптимизация запросов PostgreSQL, версия 2.0
Существует два способа анализировать SQL-запросы:
На макроуровне: в этом случае мы анализируем рабочую нагрузку как единое целое (есть три основных подхода: использование метрик из pg_stat_statements или аналогичного модуля, анализ логов с помощью pgBadger или другого похожего решения и запрос выборки в представлении pg_stat_activity).
На микроуровне: в этом случае мы погружаемся в детали исполнения одного конкретного запроса (тут главную роль играет команда EXPLAIN).
Между этими двумя подходами есть немало "белых пятен", которые обнаруживаются с ростом нагрузки. Главные проблемы:
- Нужно переключаться между макро- и микроуровнем без больших накладных расходов.
- Требуется надёжная проверка гипотез относительно возможных оптимизаций.
- Есть необходимость минимизации рисков при развёртывании новой функциональности.
Чтобы справляться с этими задачами в растущем проекте, требуется продвинутый опыт в качестве администратора баз данных, и – иногда – интуиция. Также могут помочь новые инструменты, которые (к счастью для нас!) не так давно начали появляться.
В рамках данного мастер-класса мы разберёмся, как можно настроить процесс беспроблемной и бесшовной оптимизации SQL-запросов в вашей организации: а) какие инструменты следует выбрать в вашем конкретном случае? б) как эффективно заполнить вышеупомянутые пробелы в сфере анализа запросов?
-
Дарья Вилкова Postgres Professional младший инженер баз данных
Обзор новой функциональности и настройка Zabbix Agent 2 для мониторинга PostgreSQL
В версии Zabbix Server 5.0.1 для Zabbix Agent 2 стал доступен плагин мониторинга PostgreSQL. Он был разработан компанией Postgres Professional совместно с Zabbix. В презентации будет рассказано о принципе работы плагина, вариантах его настройки, а также о возможности добавления кастомных метрик.
-
Брюс Момжиан EnterpriseDB Senior Database Architect
Postgres и искусственный интеллект в современном мире
Искусственный интеллект, машинное обучение и глубокое обучение — это взаимосвязанные концепты, которые пытаются решить проблемы, бросающие вызов традиционным вычислительным решениям — с помощью них обнаруживают мошенничество, распознают голос и определяют релевантность результатов поиска. Несмотря на то, что они противостоят традиционному вычислению, они требуют больших вычислительных ресурсов — вплоть до вычисления миллионов вероятностей и весов. Хотя эти вычисления могут выполняться вне базы данных, машинное обучение внутри базы данных, близко к тому, где хранятся данные, даёт определенные преимущества. В этой презентации будет разъяснено, как выполнять машинное обучение в базе данных под управлением Postgres.
-
David Steele Crunchy Data Principal Architect
Лучшие практики для бэкапов с помощью pgBackRest
Резервное копирование является важной частью любого решения для корпоративных баз данных, но оно часто выполняется плохо или вообще игнорируется, что может привести к потере данных в случае отказа оборудования или другого сбоя.
В этом докладе мы рассмотрим лучшие практики резервного копирования баз данных и способы их реализации с помощью pgBackRest, в том числе:
- архивирование и хранение журнала предзаписи (WAL);
- частоту снятия резервных копий и срок их хранения;
- достижение целей по времени / точке восстановления;
- варианты конфигурации;
- обоснование с точки зрения производительности.