title

text

Дмитрий Фатов
Дмитрий Фатов
: декабря
40 мин

Разгоняем вставку больших объемов данных Spring + PostgreSQL

Разработчикам часто приходится встречаться с оптимизацией различных бизнес-процессов. В этом докладе спикер покажет процесс оптимизации вставки в PostgreSQL с использованием фреймворка Spring со стороны прикладного разработчика. Также расскажет о проблемах медленной вставки данных в БД и о том, как можно ускорить этот процесс от простых настроек до использования кастомных методов PostgreSQL.

Слайды

Слайды доступны участникам мероприятия, выполнившим вход в личный кабинет.

Видео

Видео доступно участникам мероприятия, выполнившим вход в личный кабинет

Другие доклады

  • Александр Никитин
    Александр Никитин PGMechanix Администратор баз данных
    40 мин

    Миграция int-> bigint

    Довольно часто встречается ситуация, когда система начинает расти. И то, что раньше работало через какое-то время перестаёт работать. Именно так обстоит дело и с переполнением типов данных. Если в начале проекта хватало int4, то через какое-то время он может полностью исчерпаться и нужно переходить на bigint. В своём докладе я опишу то, с чем сталкивается ДБА, опишу путь решения подобной задачи и познакомлю с утилитой, которая значительно упростит выполнение подобного рода задач.

  • Василий Пучков
    Василий Пучков ООО Главный эксперт
    40 мин

    JSONB и будущее реляционных СУБД - взгляд разработчика

    История сложных отношения реляционной и объектной моделей: - крепкие опоры и неразрешимые противоречия; - разные хорошие попытки - составные типы, классы, XML, JSON. JSONB - новый ответ и вопросы к нему. Ловушки и тупики, в которые может завести увлечение JSONB. Очевидные и неочевидные способы использования JSONB в разработке.

  • Никита Печёнкин
    Никита Печёнкин Postgres Professional Разработчик программного обеспечения
    40 мин

    Консистентность в распределенных системах на базе PostgreSQL

    Поговорим о консистентности в распределенных системах с точки зрения СУБД, распределенной системы и распределенной СУБД. Рассмотрим иерархию уровней согласованности, в т.ч. с точки зрения допустимых аномалий. Рассмотрим и сравним гарантии согласованности данных, предоставляемые различными решениями на базе PostgreSQL включая Shardman от Postgres Pro. Рассмотрим архитектуру Shardman с точки зрения возможных аномалий и наши способы от этих аномалий избавиться. Расскажем о том, как мы в Shardman верифицируем гарантии консистентности с помощью jepsen-тестирования.

  • Владимир Сердюк
    Владимир Сердюк Общество с ограниченной ответственностью «Кластерные технологии Софтпоинт» Ген. директор
    40 мин

    Распределение транзакционной нагрузки в кластере серверов СУБД

    Данный доклад представляет собой описание концепции и прототипа кластера СУБД, работающего по принципу Master-Master. Проблема синхронизации данных в таких системах ни в одном тиражном решении до сих пор не решена, поэтому масштабирование для OLTP-систем, где транзакционная нагрузка сильно превалирует над аналитической, решается до сих пор только усилением аппаратной части – добавить ядер/процессоров, добавить памяти, что зачастую бывает не самым рациональным решением. Напомню, что задача распределения аналитической нагрузки решается относительно просто с помощью создания дополнительных реплик и перенаправления запросов на чтение вне транзакций на другие реплики. В случае же транзакционной нагрузки, если применять аналогичный подход, возникают коллизии, например, типа «писатель-писатель», которые, если их не учитывать, могут привести к неверным данным в транзакциях. Концепция кластера распределённых вычислений на первый взгляд звучит просто: «Все запросы на изменение данных выполняются мгновенно на всех нодах (серверах кластера), а чтение выполняется локально». Специальный прокси-агент распарсивает запросы, и выполняет запросы на чтение локально, а запросы на изменение перенаправляются параллельно и асинхронно на все остальные ноды кластера. Все изменения выполняются в системе зеркальных распределённых транзакций , которыми управляет координатор распределённых транзакций. Несмотря на простоту концепции и формулировки, возникает множество технических проблем, которые нигде ранее не были решены. В случае высокого параллелизма и конкуренции ресурсов порядок запросов на разных серверах может изменяться, что, в свою очередь, может приводить к изменению состава данных и к распределенным взаимоблокировкам. Также возникают сложности с падением линейной скорости примитивных операций. И, не решив проблемы оптимизации, данное решение сразу не подойдет для большинства систем. Одними из целевых показателей промышленного решения будет являться подключение до 20-и серверов в кластер с линейной просадкой времени операций не более чем на 10 % .

    В докладе будут рассмотрены эти и другие проблемы распределено-вычислительного кластера. В том числе, представлены примеры системы, для которых это будет максимально эффективным решением, а также описание архитектуры и демонстрация прототипа.