"Умное" индексирование jsonb
PostgreSQL имеет репутацию универсальной СУБД,то есть базы данных, с которой можно стартовать практически любой проект, так как она имеет богатую функциональность,отличную репутацию и большое сообщество. Ее расширяемость позволяет добавлять недостающие функции силами прикладных программистов без остановки системы.
Я расскажу про то, как мы в Postgres Professional улучшили работу с индексами, а именно, добавили возможность использования параметров для их создания. В качестве примера, я расскажу про "умное" индексирование jsonb с помощью нашего расширения jsquery. "Умное" индексирование означает, что можно задавать подмножество jsonb для индексирование с помощью jspath,нового типа данных jsquery, который можно будет указывать в качестве параметра при создании индекса. Таким образом, индекс будет меньше,что положительно скажется на производительности запросов и лучшей конкурентности. Кроме того, параметры к оп классам позволят гибче работать с уже существующими индексами, а также помогут при индекскации jsonb с помощью jsonpath из ожидаемого SQL/JSON.
Слайды
Видео
Другие доклады
-
Максим Соболевский JetBrains Менеджер по марткеингу
DataGrip: IDE для PostgreSQL от JetBrains
JetBrains 15 лет производит среды разработки для работы со многими языками программирования. Самая популярная из них – IntelliJ IDEA для java, но она поддерживает и базы данных. В какой-то момент мы решили, что эту функциональность и глубокий опыт компании в работе с языками можно привнести и в мир SQL – так появилась среда разработки DataGrip. В докладе я расскажу о том, как DataGrip помогает писать код и работать с данными быстро, как расширить самому функциональность инструмента и постараюсь выяснить, какие проблемы в инструментарии актуальны для российского PostgreSQL сообщества.
-
Olivier Courtin DataPink Owner & DataScientist
Продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python
PostGIS на протяжении двух десятилетий завовевал известность как лучшее опенсорсное решение для анализа пространственных данных. В докладе я остановлюсь на продвинутом анализе пространственных данных с помощью PostGIS, расскажу о дальнейшем развитии с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.
-
Дмитрий Павлов Arenadata Big Data solutions Senior Consultant
Дрессируем Greenplum
С необходимостью завести в корпоративном IT-ландшафте аналитическую СУБД сталкивается большинство компаний, чей бизнес так или иначе затрагивает информационные технологии. В докладе я расскажу о самых главных нюансах развёртывания и эксплуатации распределённой аналитической open-source СУБД, основанной на PostgreSQL - Greenplum, разберу типичные ошибки при её использовании, приведу best practices и обращу внимание на тонкие места.
-
Максим Милютин Wildberries Разработчик/DBAДмитрий Иванов Postgres Professional Developer
Встроенное партицирование в постгресе и сторонние решения
В 10-й версии постгреса появилось встроенное партицирование таблиц. Однако ставить точку на развитии этого функционала, начало работы над которым ведётся с августа 2015 года, пока рано. В новом 11-ом релизе ведутся несколько параллельных работ по преодолению ограничений встроенного партицирования (update ключа партицирования, вставка в foreign партиции, локальные и глобальные индексы) и внедрение оптимизаций (runtime partition pruning, parallel append нода и partition-wise aggregation/grouping), которые восполнят многолетний пробел в этой области.
Помимо этого получили развитие сторонние решения для партицирования таблиц - pg_pathman и timescaledb, каждый из которых предоставляет свои дополнительные возможности, отсутствующие в ваниле.
В своём доклады мы постараемся рассказать про возможности каждого из решений, обрисовать нишу, сделав упор на разрабатываемые фичи в ванильном постгресе.