"Умное" индексирование jsonb
PostgreSQL имеет репутацию универсальной СУБД,то есть базы данных, с которой можно стартовать практически любой проект, так как она имеет богатую функциональность,отличную репутацию и большое сообщество. Ее расширяемость позволяет добавлять недостающие функции силами прикладных программистов без остановки системы.
Я расскажу про то, как мы в Postgres Professional улучшили работу с индексами, а именно, добавили возможность использования параметров для их создания. В качестве примера, я расскажу про "умное" индексирование jsonb с помощью нашего расширения jsquery. "Умное" индексирование означает, что можно задавать подмножество jsonb для индексирование с помощью jspath,нового типа данных jsquery, который можно будет указывать в качестве параметра при создании индекса. Таким образом, индекс будет меньше,что положительно скажется на производительности запросов и лучшей конкурентности. Кроме того, параметры к оп классам позволят гибче работать с уже существующими индексами, а также помогут при индекскации jsonb с помощью jsonpath из ожидаемого SQL/JSON.
Слайды
Видео
Другие доклады
-
Андрей Литуненко 2ГИС Программист
Как мы распрощались с MongoDB и перешли на PostgreSQL
В своем докладе я поделюсь опытом переноса, конвертацией NoSQL-данных в реляционный вид и расскажу, как нам удалось ускорить приложение в 2 раза.
Изначально для хранения данных мы использовали PosgtgreSQL и MongoDB. На практике мы выяснили, что такое разделение крайне неудобно. Мы тратили уйму времени и внимания.
Расскажу, как с помощью mosql мы перенесли данные из MongoDB в PostgreSQL. Теперь все данные могут быть получены одним запросом, а схема таблиц обеспечивает консистентность данных.
-
Olivier Courtin DataPink Owner & DataScientist
Мастер-класс: продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python
На мастер-классе будут рассмотрены: продвинутый анализ пространственных данных на чистом PostGIS, включая новейшие функции PostGIS; приведение в соответствие разных типов данных в PostgreSQL и Python (массивы в NumPy, таблицы в Pandas); секреты эффективной работы с инструментами и средами обработки данных (Jupyter, dataviz и др.); дальнейшее развитие с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.
-
Николай Рыжиков Health Samurai CTO
Использование PostgreSQL и Сlojure для разработки приложений, ориентированных на работу с базами данных
Если честно взглянуть на большинство наших бизнес-приложений, то они через провод собирают данные в базу и раздают их в обратном направлении. Что, если не пытаться воздвигать стену абстракций между приложением и базой данных (ORM), а постараться использовать их симбиоз - сильные стороны и индивидуальные особенности.
Я расскажу как мы используем postgresql и clojure для создания data intensive приложений для медицины.
- functional relational programming
- jsonb для моделирования сложной предметной области
- функциональные индексы и расширение json-knife для поиска в jsonb
- реализация graphql на postgres
- logical replication для построения реактивных интеграций
- асинхронный JDBC-free коннектор к postgresql на netty
-
Вадим Яценко Tantor Lab Генеральный директорСергей Ким Ingram Micro Cloud Software Architect
PostgreSQL High Availability кластер для Enterprise
В последнее время PostgreSQL все чаще используется для Enterprise. Наша компания Ingram Micro Cloud была одной из первых, кто сделал это. Мы уже много лет используем PostgreSQL в качестве основной СУБД для наших продуктов. В докладе мы хотим рассказать об эволюции нашего High Availability (HA) кластера PostgreSQL: как мы в сжатые сроки внедряли решение на pgpool-II, писали failover сценарии, тестировали Postgres-XL и придумывали необычные конфигурации Stolon. Немного поговорим о проблемах балансировки нагрузки, пуллинга соединений и бекапировании.