title

text

February 04 – 06 , 2019

PgConf.Russia 2019

PgConf.Russia 2019

PGConf.Russia is a leading Russian PostgreSQL international conference, annually taking together more than 500 PostgreSQL professionals from Russia and other countries — core and software developers, DBAs and IT-managers. The 3-day program includes training workshops presented by leading PostgreSQL experts, more than 40 talks, panel discussions and a lightning talk session.

Thems

  • PostgreSQL at the cutting edge of technology: big data, internet of things, blockchain
  • New features in PostgreSQL and around: PostgreSQL ecosystem development
  • PostgreSQL in business software applications: system architecture, migration issues and operating experience
  • Integration of PostgreSQL to 1C, GIS and other software application systems.
  • more than
    0 participants
  • 0 speakers
  • 0
    minutes of conversation
  • 63 talks
  • offline
    format

Talks

Talks archive

PgConf.Russia 2019
  • Andrey Fefelov
    Andrey Fefelov Mastery.pro

    While doing development of one of our project we were asked to build HA database using Postgres, geographically distributed.

    First our choice was obvious, we started to work with big 3 cloud providers, but soon it was quite understand that everything costs big enough for us. Also there were a bunch of incompatibilities with unsupported extensions as well as londiste replication we were heavily used.

    I will talk about why we chose patroni, what types of problem we faced with and patroni's special features can dramatically simplify deploy and everyday usage.

  • Tatsuro Yamada
    Tatsuro Yamada NTT Comware

    As is often seen in OLAP and batch processing workloads, the more complex a query (containing many joins, filters, aggregates), the more there is a possibility of row count estimation errors, which leads to planner choosing an inefficient execution plan.

    To address that problem, I developed a tool called pg_plan_advsr as a PostgreSQL extension, which corrects the estimation errors by repeatedly feeding back the information collected during query execution to the planner.

    The tool has three features:

    1. Automatic plan tuning by repeatedly feeding execution information to planner
    2. Preserve all plans generated during plan tuning in a history table
    3. Create and store optimizer hints to be able to reproduce plans generated during tuning process

    I verified the effectiveness of pg_plan_advsr by enabling it when running the join order benchmark (JOB) against PG 10.4 and observed its execution time shortening to 50% of the original. Therefore, it is useful for user who would like to do plan tuning for OLAP and batch processing.

    I will talk about the following things in this presentation:

    • Principles behind pg_plan_advsr and its architecture
    • Detailed information about the measurements done with JOB
    • Possible future enhancements
    • Using aqo and pg_plan_advsr together (experimental)

  • Teodor Sigaev
    Teodor Sigaev PostgresPro

    Postgres is known for it extensibility, which made it the universal database, that means it can meet the requirements of practically any project. Many extensions are well-known and widely used, for example, PostGIS extension - de-facto standard of open source GIS, hstore - an extension for storing and manipulation of arbitrary key/value pairs. I will talk about less known but useful PostgreSQL extensions, which provides a new functionaliy and/or improve the performance of PostgreSQL.

    PostgreSQL was designed to be extensible, it provides an API to application developers to extend PostgreSQL functionality and/or improve the performance for specific data and workloads. It is important that there is no need of having expertise of core developers, and these new functionality could be added online without restarting of database server. Application developer can create various database objects, such as functions, data types, operators, indexes, and even new access methods.

    I will present my choice of two extensions out of hundreds:

    vops - greatly improves the performance of Postgres for OLAP queries using vector operations, pg_variables - provides session variables for storing scalars and relations, useful for generating reports on read-only replicas.

  • Kamil Islamov
    Kamil Islamov Stickeroid Ai

    Wide usage of Common Table Expression queries considered as a core paradigm for implementing the Business Logic for high loaded web applications development based on PostgreSQL functions.

All talks

Partners

PgConf.Russia 2019

Organizational

Informational

Technical

Partner