title

text

February 04 – 06 , 2019

PgConf.Russia 2019

PgConf.Russia 2019

PGConf.Russia is a leading Russian PostgreSQL international conference, annually taking together more than 500 PostgreSQL professionals from Russia and other countries — core and software developers, DBAs and IT-managers. The 3-day program includes training workshops presented by leading PostgreSQL experts, more than 40 talks, panel discussions and a lightning talk session.

Thems

  • PostgreSQL at the cutting edge of technology: big data, internet of things, blockchain
  • New features in PostgreSQL and around: PostgreSQL ecosystem development
  • PostgreSQL in business software applications: system architecture, migration issues and operating experience
  • Integration of PostgreSQL to 1C, GIS and other software application systems.
  • more than
    0 participants
  • 0 speakers
  • 0
    minutes of conversation
  • 63 talks
  • offline
    format

Talks

Talks archive

PgConf.Russia 2019
  • Peter Gribanov
    Peter Gribanov 1C LLC

    • 1С: as a cross-platform business application development environment
    • 1С and PostgreSQL together since 2006
    • 1C How to work with 1С on PostgreSQL in 1cFresh cloud service
    • What major improvements in 1С:platform make work with PostgreSQL more efficient.

  • Tatsuro Yamada
    Tatsuro Yamada NTT Comware

    As is often seen in OLAP and batch processing workloads, the more complex a query (containing many joins, filters, aggregates), the more there is a possibility of row count estimation errors, which leads to planner choosing an inefficient execution plan.

    To address that problem, I developed a tool called pg_plan_advsr as a PostgreSQL extension, which corrects the estimation errors by repeatedly feeding back the information collected during query execution to the planner.

    The tool has three features:

    1. Automatic plan tuning by repeatedly feeding execution information to planner
    2. Preserve all plans generated during plan tuning in a history table
    3. Create and store optimizer hints to be able to reproduce plans generated during tuning process

    I verified the effectiveness of pg_plan_advsr by enabling it when running the join order benchmark (JOB) against PG 10.4 and observed its execution time shortening to 50% of the original. Therefore, it is useful for user who would like to do plan tuning for OLAP and batch processing.

    I will talk about the following things in this presentation:

    • Principles behind pg_plan_advsr and its architecture
    • Detailed information about the measurements done with JOB
    • Possible future enhancements
    • Using aqo and pg_plan_advsr together (experimental)

  • Pavel Trukhanov
    Pavel Trukhanov okmeter.io

    Brendan Gregg’s USE (Utilization, Saturation, Errors) method for monitoring is quite known. There’s also Tom Wilkie’s RED (Rate, Errors, Durations) method, which is suggested to be better suited to monitor services than USE. I want to talk about how we employ these methodologies when we develop our Postgres monitoring in okmeter.io.

  • Teodor Sigaev
    Teodor Sigaev PostgresPro

    Sometimes there is a great desire to return the database to the past, for a day or two or more days. The reasons are diverse, but most often one is to see what has changed. Or to see if the application behaved incorrectly after the update. Or it was just a command from the boss. The classic way everyone knows is to keep full backups and sets of WAL-logs to be able to recover to an arbitrary moment. This method is a real headache for DBAs/administrators, and it will not work quickly. Sure, there are some ways to optimize this process, but downtime is inevitable. PostgresPro offers a new way — database snapshots and the ability to return to them.

All talks

Partners

PgConf.Russia 2019

Organizational

Informational

Technical

Partner