PgConf.Russia 2019
PGConf.Russia is a leading Russian PostgreSQL international conference, annually taking together more than 500 PostgreSQL professionals from Russia and other countries — core and software developers, DBAs and IT-managers. The 3-day program includes training workshops presented by leading PostgreSQL experts, more than 40 talks, panel discussions and a lightning talk session.
Thems
- PostgreSQL at the cutting edge of technology: big data, internet of things, blockchain
- New features in PostgreSQL and around: PostgreSQL ecosystem development
- PostgreSQL in business software applications: system architecture, migration issues and operating experience
- Integration of PostgreSQL to 1C, GIS and other software application systems.
Talks
Talks archive
-
Miroslav Šedivý solute GmbHSo you finally have your database model for your application and you fill it in with current data. How do you keep it up to date? While INSERT may still be transparent, UPDATE and DELETE will overwrite your previous data, so you won't be able to reproduce them. Cloning the whole huge content for each minor update is not an option. For rich and complex data about hundreds of thousands of power generators in Germany and worldwide, I built a model using range data types in recent PostgreSQL which allows me to insert, update and delete data while granting the full access to the whole state of the database at any historical moment. I'll present a very simplified version of the database so the audience will be immediately able to apply it for their cases. I'll also show a few tricks in Python and Psycopg2 that will allow a whole team to prepare, review, and deploy all revisions to this database without merge conflicts. And I'll give a few ideas on how to retrieve this data efficiently.
-
Tatsuro Yamada NTT ComwareAs is often seen in OLAP and batch processing workloads, the more complex a query (containing many joins, filters, aggregates), the more there is a possibility of row count estimation errors, which leads to planner choosing an inefficient execution plan.
To address that problem, I developed a tool called pg_plan_advsr as a PostgreSQL extension, which corrects the estimation errors by repeatedly feeding back the information collected during query execution to the planner.
The tool has three features:
- Automatic plan tuning by repeatedly feeding execution information to planner
- Preserve all plans generated during plan tuning in a history table
- Create and store optimizer hints to be able to reproduce plans generated during tuning process
I verified the effectiveness of pg_plan_advsr by enabling it when running the join order benchmark (JOB) against PG 10.4 and observed its execution time shortening to 50% of the original. Therefore, it is useful for user who would like to do plan tuning for OLAP and batch processing.
I will talk about the following things in this presentation:
- Principles behind pg_plan_advsr and its architecture
- Detailed information about the measurements done with JOB
- Possible future enhancements
- Using aqo and pg_plan_advsr together (experimental)
-
Joshua Drake Command Prompt, Inc.In this tutorial we will discuss Binary and Logical replication in a practitioner format. The topics that will be included are native Postgres replication technologies, configuring and managing them. We will also discuss performance and draw backs of various architectures (sync vs async etc...). At the end of this presentation the attendees will be able to configure a basic replication deployment with HOT Standby and well as have an understanding of other technologies such as Point in Time Recovery and cascading replication.
-
Pavel Molyavin 2GISThe dark age for PostgreSQL started at 2GIS after transitioning to the microservice architecture. Every team tried to cook database on their own — by installing instances, juggling versions, trying to code deployments with numerous tools or using manual operations. It was the right time to develop a “silver bullet” — a common set of tools to solve all the problems at once. We created our own cluster solution based on well-known PostgreSQL, repmgr, pgbouncer and Barman. Despite of the complexity of our final solution, we developed a repeatable flexible deployment to accelerate postgresql cluster deployment and management. Also we deployed the our own cluster to consolidate all databases. It helped to eliminate team efforts for database management and focus on their main goals. Failover works, we tried it :-)
Photos
Photo archive