title

text

February 04 – 06 , 2019

PgConf.Russia 2019

PgConf.Russia 2019

PGConf.Russia is a leading Russian PostgreSQL international conference, annually taking together more than 500 PostgreSQL professionals from Russia and other countries — core and software developers, DBAs and IT-managers. The 3-day program includes training workshops presented by leading PostgreSQL experts, more than 40 talks, panel discussions and a lightning talk session.

Thems

  • PostgreSQL at the cutting edge of technology: big data, internet of things, blockchain
  • New features in PostgreSQL and around: PostgreSQL ecosystem development
  • PostgreSQL in business software applications: system architecture, migration issues and operating experience
  • Integration of PostgreSQL to 1C, GIS and other software application systems.
  • more than
    0 participants
  • 0 speakers
  • 0
    minutes of conversation
  • 63 talks
  • offline
    format

Talks

Talks archive

PgConf.Russia 2019
  • Andrey Fefelov
    Andrey Fefelov Mastery.pro

    While doing development of one of our project we were asked to build HA database using Postgres, geographically distributed.

    First our choice was obvious, we started to work with big 3 cloud providers, but soon it was quite understand that everything costs big enough for us. Also there were a bunch of incompatibilities with unsupported extensions as well as londiste replication we were heavily used.

    I will talk about why we chose patroni, what types of problem we faced with and patroni's special features can dramatically simplify deploy and everyday usage.

  • Pavel Trukhanov
    Pavel Trukhanov okmeter.io

    Brendan Gregg’s USE (Utilization, Saturation, Errors) method for monitoring is quite known. There’s also Tom Wilkie’s RED (Rate, Errors, Durations) method, which is suggested to be better suited to monitor services than USE. I want to talk about how we employ these methodologies when we develop our Postgres monitoring in okmeter.io.

  • Miroslav Šedivý
    Miroslav Šedivý solute GmbH

    So you finally have your database model for your application and you fill it in with current data. How do you keep it up to date? While INSERT may still be transparent, UPDATE and DELETE will overwrite your previous data, so you won't be able to reproduce them. Cloning the whole huge content for each minor update is not an option. For rich and complex data about hundreds of thousands of power generators in Germany and worldwide, I built a model using range data types in recent PostgreSQL which allows me to insert, update and delete data while granting the full access to the whole state of the database at any historical moment. I'll present a very simplified version of the database so the audience will be immediately able to apply it for their cases. I'll also show a few tricks in Python and Psycopg2 that will allow a whole team to prepare, review, and deploy all revisions to this database without merge conflicts. And I'll give a few ideas on how to retrieve this data efficiently.

  • Alexey Fadeev
    Alexey Fadeev Sibedge

    Many DBMS specialists do not like these three letters - ORM because they have repeatedly seen the enormous queries ORM-generated for simplest operations. However practice shows that the origin of the problem is not ORM itself but rather those developers who are not able to use ORM properly. In this report I will tell you the basic principles of how to write code for ORM which generates "good" queries and also show you "bad" code samples and what you get out of them. The main idea is we have to think in SQL-style when writing the code, and so to learn to foresee what kind of query will be generated. But even having mastered that you must always check the output SQL for complex queries. I will show an example when a slight change in ORM-logic increases the volume of output SQL by dozens of times(!). I will tell you about additional tools and tricks. Namely - disabling tracking, INCLUDE construction, alternative syntax for JOIN, how to get more data using a smaller number of queries, how to effectively write queries with grouping, and what do we need mappings for. I will not bypass the cases when it is not possible to effectively solve the problem by means of ORM (for example, queries with recursion). In addition to SELECT requests, there are some Batch-Update/Delete tools that allow you to update and delete data using ORM tools without downloading data to the client side. We'll also talk on how to force the ORM to insert large volumes of data quickly via Multi-Insert and COPY. I will also discuss how ORM supports PostgreSQL-specific data types i.g. arrays, hstore and jsonb. But does it make sense to use ORM at all, since there is so much to learn? Sure it does. There are advantages of using ORM, and we will discuss them as well. All examples are based on Entity Framework technology for .Net Core and .Net Framework in C#. There are some subtle differences in ORM usage in Hibernate/NHibernate, but the basic principles remain the same, so the report will be useful for developers using various technologies.

All talks

Partners

PgConf.Russia 2019

Organizational

Informational

Technical

Partner