title

text

Darafei Praliaskouski
Darafei Praliaskouski Juno
18:00 05 February
45 мин

PostGIS for Disaster Management

PostGIS is spatial extension for PostgreSQL.

This talk will go in depth on using PostGIS for disaster management: which functions can be used and for what.

Слайды

Видео

Другие доклады

  • Joshua Drake
    Joshua Drake Command Prompt, Inc.
    180 мин

    Postgres Performance and Maintenance

    When you are optimizing Postgres it is usually maintenance that goes by the wayside. How do we fix autovacuum? Where did all of this bloat come from? Why am I getting IO spikes? How do I get RDS to behave?! Why are commits so slow on replication? The answer to all of these questions is understanding the relationship between proper Postgres maintenance and performance. Join us for a 3 hour jaunt through the wily world of making Postgres Go!

  • Alexander Korotkov
    Alexander Korotkov Postgres Professional
    45 мин

    PostgreSQL bottlenecks

    It's so good when database behaves predictable. When the performance is lacking, you just add CPU cores, terabytes of RAM and millions of IOPS, and everything becomes good again. But it's rather unpleasant, when server have plenty of free resources, while database is still running slow. And it's especially sad if stress testing detects no problems, while real life workload of the same volume makes your database hang.

    In this talk I will consider bottlenecks of PostgreSQL, which we met in our practice, and which causes sad behavior described above. I'll also explain what can be done at user level in order to evade these bottlenecks, and what developers are planning to do in order to eliminate those bottlenecks. I'm also planning give some recipes of stress testing, which could have to evade surprises in production.

  • Alexey Fadeev
    Alexey Fadeev Sibedge
    45 мин

    ORM: how to write queries and not to drive database crazy

    Many DBMS specialists do not like these three letters - ORM because they have repeatedly seen the enormous queries ORM-generated for simplest operations. However practice shows that the origin of the problem is not ORM itself but rather those developers who are not able to use ORM properly. In this report I will tell you the basic principles of how to write code for ORM which generates "good" queries and also show you "bad" code samples and what you get out of them. The main idea is we have to think in SQL-style when writing the code, and so to learn to foresee what kind of query will be generated. But even having mastered that you must always check the output SQL for complex queries. I will show an example when a slight change in ORM-logic increases the volume of output SQL by dozens of times(!). I will tell you about additional tools and tricks. Namely - disabling tracking, INCLUDE construction, alternative syntax for JOIN, how to get more data using a smaller number of queries, how to effectively write queries with grouping, and what do we need mappings for. I will not bypass the cases when it is not possible to effectively solve the problem by means of ORM (for example, queries with recursion). In addition to SELECT requests, there are some Batch-Update/Delete tools that allow you to update and delete data using ORM tools without downloading data to the client side. We'll also talk on how to force the ORM to insert large volumes of data quickly via Multi-Insert and COPY. I will also discuss how ORM supports PostgreSQL-specific data types i.g. arrays, hstore and jsonb. But does it make sense to use ORM at all, since there is so much to learn? Sure it does. There are advantages of using ORM, and we will discuss them as well. All examples are based on Entity Framework technology for .Net Core and .Net Framework in C#. There are some subtle differences in ORM usage in Hibernate/NHibernate, but the basic principles remain the same, so the report will be useful for developers using various technologies.

  • Aleksander Pavlov
    Aleksander Pavlov Modulbank
    45 мин

    How to break your DBMS with arised-from-nothing high loads?

    As any ordinary software developers, we just pursued a goal to develop a system robust for high loads, and even succeeded. The system architecture was fine, but the data volume was keeping increased and revealed the painful issues and errors that nobody had expected. We faced very strange queries seemed to be unbelievable. In my short talk I would like to share sad experience of arised-from-nothing high loads in DBMS and solving the challenge.