title

text

Yugo Nagata
Yugo Nagata SRA OSS, Inc. Japan
12:05 01 March
45 мин

Updating Materialized Views Automatically and Incrementally

Materialized view is a feature to store the results of view definition queries in DB in order to achieve faster query response. However, the data in the view gets stale after underlying tables are modified. Therefore, view maintenance is needed to keep the contents up to date. PostgreSQL has REFRESH MATERIALIZED VIEW command for updating a materialized view, but this command needs to recompute the contents from scratch, so this is not efficient in cases where only a small part of a base table is modified.

Incremental View Maintenance (IVM) is a technique to maintain materialized views efficiently, which computes and applies only the incremental changes to the materialized views instead of recomputing. This feature is required for updating materialized views rapidly but not implemented on PostgreSQL yet.

Therefore, we developed IVM on PostgreSQL and are proposing to implement this as a core feature. The patch is now under discussion on the hackers mailing list. Our implementation allows materialized views to be updated automatically and incrementally when a underlying table is modified. You don't need to write your own trigger function for updating views. As a result of continuous development, the current implementation supports some aggregates, subqueries, self-join, outer joins, and CTEs (WITH clauses) in a view definition query. The result of performance evaluation using TPC-H queries shows that our IVM implementation can update a materialized view more than 200 times faster than re-computation by REFRESH command.

In this talk, we will describe our IVM implementation and its features.

Видео

Другие доклады

  • Ivan Frolkov
    Ivan Frolkov Postgres Professional
    22 мин

    Trying to gain peace of mind by using constraints

    There's a common delusion that constraints should never be used as they affect performance in a negative way, interfere with regular work, and are, all in all, useless. The database is commonly perceived as just a storage without any logic. I'll explain why it isn't so and what this careless approach may lead to.

  • Vasiliy Puchkov
    Vasiliy Puchkov ООО
    45 мин

    Development of an integration database for production data of oil depots based on PostgreSQL

    An architectural approach as the basis for a sustainable solution. Old and new technologies - unity and struggle of opposites. Information security and business requirements - is there a compromise?

  • Julien Rouhaud
    Julien Rouhaud
    Tatsuro Yamada
    Tatsuro Yamada NTT Comware
    22 мин

    Building automatic adviser and performance tuning tools in PostgreSQL

    PostgreSQL is a mature and robust RDBMS since it has 30 years of history. Over the year, its query optimizer has been enhanced and usually produces good query plans.

    However, can it always come up with good query plans? The optimization process has to use some assumptions to produce plans fast enough. Some of those assumptions are relatively easy to check (e.g. statistics are up-to-date), some harder (e.g. correct indexes are created), and some nearly impossible (e.g. making sure that the statistic samples are representative enough even for skewed data repartition). For now, given those various caveats, DBA sometimes can't always realize easily that they miss a chance to get a meaningful performance improvement.

    To help DBA to get a truly good query plan, we'll present below some tools that can help to fix some of those problems by providing a missing index adviser, looking for extended statistics to create, and row estimation error correction information to get appropriate join orders with join methods automatically.

    • pg_qualstats: provides a new index and extended statistics suggestions to gather many predicate statistics on the production workload.
    • pg_plan_advsr: provides alternative good query plans automatically to analyze iterative query executions information to fix estimation rows error.

    In this talk, we will explain how those tools work under the hood and see what can be done, how they can work together. Also, we will mention what other tools also exist for related problems. Therefore, it will be useful for DBA who are interested in improving query performance or want to check whether current settings of indexes and statistics are adequate.

  • Иван Чувашов
    Иван Чувашов ООО Calltouch
    45 мин

    Life of DBA in the OKKO online cinema

    Okko is one of the largest legal online cinemas in Russia. Our catalog contains 60 000 movies, cartoons and TV series. Since its starting, the service has been visited by over 20 million users. The monthly audience is 2.8 million people. All these figures speak of a reliable high-load service.

    As DBA, I will mainly talk about databases (PostgreSQL, Cassandra, Redis) that are used in the company. We'll take a closer look at PostgreSQL on the topics of high loads, monitoring, optimization, backup and recovery.