title

text

Yugo Nagata
Yugo Nagata SRA OSS, Inc. Japan Chief Scientist
12:05 01 марта
45 мин

Автоматическое инкрементальное обновление материализованных представлений

Материализованное представление служит для хранения результатов запросов определения представления в БД, чтобы добиться более быстрого ответа на запрос. Однако данные в представлении устаревают после изменения базовых таблиц. Следовательно, для поддержания актуальности содержимого необходимо обновлять представление. В PostgreSQL есть команда REFRESH MATERIALIZED VIEW для обновления материализованного представления, но эта команда вычисляет его содержимое с нуля, что неэффективно в случаях, когда изменяется только небольшая часть базовой таблицы.

Инкрементальное обновление представлений (IVM) - это метод эффективного обновления материализованных представлений, который вычисляет и применяет к материализованным представлениям только инкрементальные изменения вместо повторного вычисления. Эта функциональность требуется для быстрого обновления материализованных представлений, но еще не реализована в PostgreSQL.

Поэтому мы разработали IVM для PostgreSQL и предлагаем реализовать его в качестве основной функции. Патч сейчас обсуждается в списке рассылки hackers. Наша реализация делает возможным автоматическое инкрементальное обновление материализованных представлений при изменении базовой таблицы. Вам не нужно писать собственную триггерную процедуру для обновления представлений. После продолжительной работы нашей команды текущая реализация IVM поддерживает некоторые возможности аггрегации, подзапросы, соединение одной таблицы (self-join), внешние соединения (outer join) и CTE (предложения WITH) в запросе определения представления. Результат оценки производительности с использованием запросов TPC-H показывает, что наша реализация IVM может обновлять материализованное представление в 200+ раз быстрее, чем повторное вычисление с помощью команды REFRESH.

В данном докладе мы опишем нашу реализацию IVM и ее возможности.

Видео

Другие доклады

  • Александр Любушкин
    Александр Любушкин ООО "ФОРС Телеком" Технический директор
    Юлия Голубева
    Юлия Голубева ООО "ФОРС Телеком" Ведущий эксперт
    22 мин

    Новое развитие LUI (Live Universal Interface) - LUI4ORA2PG, инструмент миграции

    В докладе будет рассказано о новом инструменте миграции прикладных систем из среды Oracle в среду Postgres. Инструмент разработан на основе средства ora2pg (Gill Darold) и отечественного средства разработки приложений LUI. О LUI делались доклады на конференциях в 2019-м и 2020-м годах:

  • Николай Рыжиков
    Николай Рыжиков Health Samurai CTO
    45 мин

    SQL данными

    Почти каждое бизнесс приложение является в значительной степени генератором запросов к базе данных. Как можно легко строить запросы и делать их композицию? В этом докладе я расскажу про интересный подход из мира clojure, в котором sql записывается "данными" (data dsl) и какие возможности это открывает - от композиции и безопасного sql до макросов и анализа запросов.

  • Андрей Зубков
    Андрей Зубков Postgres Professional Руководитель группы систем мониторинга
    45 мин

    Анализатор исторической нагрузки pg_profile/pgpro_pwr и его новые возможности

    Речь пойдет о простом инструменте стратегического анализа исторической нагрузки. Расширение предназначено для поиска проблем производительности в базах данных Postgres. Расскажу о принципах работы расширения, его применимости, возможностях и развитии. У pg_profile появилась расширенная ветка pgpro_pwr, предназначенная для работы в дистрибутивах PostgresPro с расширенным набором статистик производительности. Покажу на простых примерах преимущества, доступные в базах PostgresPro Enterprise Edition и PostgresPro Standard Edition.

  • Олег Бартунов
    Олег Бартунов Postgres Professional генеральный директор
    Никита Глухов
    Никита Глухов Postgres Professional Разработчик
    45 мин

    JSONB изнутри

    JSONB - популярнейший тип данных в постгресе, но нам часто говорят, что его производительность нуждается в улучшении. Часто в одном поле типа JSONB одновременно находятся и короткие, и большие значения, например блоб и его метаданные. Сейчас это весьма неэффективно. Но мы придумали несколько подходов, дающих, как показывают эксперименты, весьма сильное ускорение.