title

text

Yugo Nagata
Yugo Nagata SRA OSS, Inc. Japan Chief Scientist
12:05 01 марта
45 мин

Автоматическое инкрементальное обновление материализованных представлений

Материализованное представление служит для хранения результатов запросов определения представления в БД, чтобы добиться более быстрого ответа на запрос. Однако данные в представлении устаревают после изменения базовых таблиц. Следовательно, для поддержания актуальности содержимого необходимо обновлять представление. В PostgreSQL есть команда REFRESH MATERIALIZED VIEW для обновления материализованного представления, но эта команда вычисляет его содержимое с нуля, что неэффективно в случаях, когда изменяется только небольшая часть базовой таблицы.

Инкрементальное обновление представлений (IVM) - это метод эффективного обновления материализованных представлений, который вычисляет и применяет к материализованным представлениям только инкрементальные изменения вместо повторного вычисления. Эта функциональность требуется для быстрого обновления материализованных представлений, но еще не реализована в PostgreSQL.

Поэтому мы разработали IVM для PostgreSQL и предлагаем реализовать его в качестве основной функции. Патч сейчас обсуждается в списке рассылки hackers. Наша реализация делает возможным автоматическое инкрементальное обновление материализованных представлений при изменении базовой таблицы. Вам не нужно писать собственную триггерную процедуру для обновления представлений. После продолжительной работы нашей команды текущая реализация IVM поддерживает некоторые возможности аггрегации, подзапросы, соединение одной таблицы (self-join), внешние соединения (outer join) и CTE (предложения WITH) в запросе определения представления. Результат оценки производительности с использованием запросов TPC-H показывает, что наша реализация IVM может обновлять материализованное представление в 200+ раз быстрее, чем повторное вычисление с помощью команды REFRESH.

В данном докладе мы опишем нашу реализацию IVM и ее возможности.

Видео

Другие доклады

  • Daniele Varrazzo
    Daniele Varrazzo Codice Lieve Директор
    90 мин

    Python для PostgreSQL: как его использовать и преуспеть в этом?

    В рамках данного мастер-класса мы посмотрим, как обеспечить бесперебойную связь между Python и PostgreSQL. На практических примерах мы разберём, как подключиться к серверу, обеспечить обмен данными, управлять уведомлениями и транзакциями, передавая параметры безопасно и в понятной форме.

    Мы рассмотрим psycopg2, наиболее часто используемую библиотеку-адаптер PostgreSQL для Python, а также анонсируем предстоящий релиз psycopg3: что останется прежним, что изменится, как лучше реализовать программу на Python, чтобы использовать PostgreSQL по максимуму.

  • Ibrar Ahmed
    Ibrar Ahmed Percona LLC Senior Database Architect
    90 мин

    Оптимизация производительности PostgreSQL

    PostgreSQL - одна из лидирующих технологий среди СУБД с открытым исходным кодом. По умолчанию конфигурация PostgreSQL не подходит для конкретной рабочей нагрузки. Эта дефолтная конфигурация PostgreSQL рассчитана на то, чтобы пользователь мог запустить Postgres на любой системе, используя минимум ресурсов. Следовательно, установленный на высокопроизводительной машине экземпляр PostgreSQL в конфигурации по умолчанию не даст оптимальной производительности, потому что машина настроена так, чтобы использовать все доступные ресурсы. PostgreSQL предоставляет возможности для настройки СУБД под вашу рабочую нагрузку и характеристики вашего оборудования. Помимо PostgreSQL также можно настроить ядро Linux для оптимизации работы СУБД под нагрузкой. В рамках данного мастер-класса мы научимся настраивать некоторые параметры PostgreSQL и посмотрим, какой эффект даёт такая настройка. Однако основной акцент мы сделаем на том, как сконфигурировать Linux для улучшения производительности Postgres. Поскольку в ядре Linux так много параметров, которые можно настроить для более оптимальной работы PostgreSQL, я также поделюсь результатами сравнительного тестирования для разных значений некоторых параметров Linux.

  • Amit Kapila
    Amit Kapila Fujitsu Senior Director
    45 мин

    Как будет развиваться логическая репликация?

    Логическая репликация в PostgreSQL доступна начиная с версии 10.0, и с каждым новым релизом она улучшается. Мы начнём доклад с обсуждения базовой архитектуры логической репликации в PostgreSQL, а затем перейдём к различным способам её использования.

    Одним из недостатков логической репликации по сравнению с физической является невозможность репликации транзакции до момента коммита. Для транзакций, которые выполняются продолжительное время, это может привести к серьёзной задержке на стороне реплики. Мы обсудим, какое решение этой проблемы реализовано в PostgreSQL.

    Мы также остановимся на других крупных разработках в области логической репликации, которые позволят осуществлять потоковую передачу транзакций в заранее заданное время. Это позволит реализовать логическую репликацию без конфликтов. Это также можно будет использовать для масштабирования чтения. Благодаря протоколу 2PC мы сможем убедиться, что реплики получили все данные, закоммиченные на мастере. Теперь мы можем спроектировать систему, где определённые узлы являются владельцами некоторого набора таблиц. Так мы всегда сможем получить данные этих таблиц с этих узлов, а также установить некий внешний процесс для учитывающей это маршрутизации для операций чтения.

    В конце доклада мы перечислим новые улучшения, связанные с логической репликацией и вошедшие в недавние релизы PostgreSQL.

  • Брюс Момжиан
    Брюс Момжиан EnterpriseDB Senior Database Architect
    45 мин

    Postgres и искусственный интеллект в современном мире

    Искусственный интеллект, машинное обучение и глубокое обучение — это взаимосвязанные концепты, которые пытаются решить проблемы, бросающие вызов традиционным вычислительным решениям — с помощью них обнаруживают мошенничество, распознают голос и определяют релевантность результатов поиска. Несмотря на то, что они противостоят традиционному вычислению, они требуют больших вычислительных ресурсов — вплоть до вычисления миллионов вероятностей и весов. Хотя эти вычисления могут выполняться вне базы данных, машинное обучение внутри базы данных, близко к тому, где хранятся данные, даёт определенные преимущества. В этой презентации будет разъяснено, как выполнять машинное обучение в базе данных под управлением Postgres.