Самый важный инструмент: Xobot IDE
В мире программирования особняком стоит создание исходного кода для "процедурных расширений" баз данных. Большинство СУБД предлагает процедурные языки и "хранимые процедуры" для создания процедурных расширений. В Postgres количество поддерживаемых официально и не очень процедурных языков уже перевалило за десяток.
Традиционно на хранимые процедуры возлагают множество задач: трудно устоять перед соблазном исполнить операцию над данными непосредственно в хранилище, особенно в Enterprise разработке. Такой подход довольно быстро приводит к размазыванию бизнес-логики по телу хранимых процедур и резко повышает стоимость поддержки и развития системы в целом.
Особенности жизненного цикла хранимых процедур затрудняют применение стандартных инструментов и практик по контролю изменений. Необходимо адаптировать работу с хранимыми процедурами к стандартам Change Management, оставаясь в рамках привычных для разработчика действий.
Мы рассмотрим проблемы разработки процедурных расширений и обсудим решения, которые мы реализуем в IDE XOBOT.
Слайды
Видео
Другие доклады
-
Мирослав Шедиви solute GmbH Senior Software Developer
Python и PostgreSQL с использованием psycopg2
Python, может быть, не самый быстрый язык программирования на CPU, но быстрая и простая разработка на нем экономит массу усилий того, кто находится между креслом и клавиатурой. В ходе мастер-класса мы разберем "psycopg2" - наиболее популярную библиотеку для доступа к серверу PostgreSQL, а также напишем небольшое приложение, используя некоторые его полезные свойства.
-
TTatsuro Yamada NTT Comware Ведущий специалист по базам данных
Настройка автопланировщика с использованием цикла обратной связи
При OLAP и пакетной обрабокте данных часто наблюдается ситуация, что чем сложее запрос (содержит много джойнов, фильтров и аггрегативных функций), тем выше вероятность ошибок в оценке количества строк, в результате чего планировщик выбирает неэффективный план исполнения запроса.
Для того, чтобы решить эту проблему, я разработал инструмент под названием pg_plan_advsr - это расширение для PostgreSQL, которое исправляет ошибки оценки путем неоднократного возвращения в планировщик информации, собранной в ходе исполнения запроса.
Расширение содержит три фичи:
- Автоматическая оптимизация плана запроса за счет неоднократного возвращения информации о ходе выполнения запроса в планировщик.
- Сохранение всех выработанных при оптимизации планов запросов в таблицу истории.
- Создание и сохранение хинтов оптимизатора с тем, чтобы иметь возможность воспроизвести выработанные планы исполнения запросов в процессе настройки.
Я верифицировал эффективность pg_plan_advsr путем запуска join order benchmark (JOB) на PG 10.4, в ходе чего наблюдалось сокращение времени исполнения запроса до 50% от первоначального. Таким образом, расширение будет полезно пользователям, который хотят настроить планировщик для OLAP и пакетной обработки данных.
В ходе презентации я расскажу о следующие моментах:
- Принципы построения и архитектура pg_plan_advsr.
- Подробная информация о результатах тестирования JOB.
- Направления улучшений в будущем.
- Совместное использование расширений aqo и pg_plan_advsr together (экспериментальное).
-
Александр Шелудченков ГК "Митра" Программист
Нестандартный кластер 1C
- Перенос стандартного кластера 1С в MPI окружение - "миграция сервисов между машинами".
- Перенос postgreSQL на GPU.
-
Максим Вихарев Alytics Технический директор
GreenHouseSQL - масштабируемая система аналитики на postgresql, greenplum и clickhouse
На pgconf’17 я рассказывал про нашу велосипедную систему аналитики на основе PostgreSQL. После этого мы посматривали в сторону хадупов, s3, престо, друидов, вертики, пентахо и прочих страшил. А потом перестали cтрадать и сомневаться и просто добавили к постгресу готовые Greenplum и Clickhouse. Получив в итоге потрясающую скорость, простую миграцию, простое обслуживание, надежность и горизонтальное масштабирование, восстановление после сбоев в две команды, уменьшение костов на инфрастуктуру и широкие функциональные возможности за счет сочетания ANSI SQL, MPP и In-memory. Оставаясь в парадигме Open-source и полноценного SQL. В итоге у нас получилось то, что мы назвали GreenHouseSQL - наша внутренняя платформа данных полного цикла. В докладе вскроем простоту внутренностей решения и рассмотрим компоненты стека под микроскопом, расскажем об их достоинствах и недостатках, фишках начала работы с Greenplum, зачем нам Clickhouse, что осталось PostgreSQL'у и как вообще все это работает.