title

text

T
Tatsuro Yamada NTT Comware Ведущий специалист по базам данных
16:00 06 февраля
22 мин

Настройка автопланировщика с использованием цикла обратной связи

При OLAP и пакетной обрабокте данных часто наблюдается ситуация, что чем сложее запрос (содержит много джойнов, фильтров и аггрегативных функций), тем выше вероятность ошибок в оценке количества строк, в результате чего планировщик выбирает неэффективный план исполнения запроса.

Для того, чтобы решить эту проблему, я разработал инструмент под названием pg_plan_advsr - это расширение для PostgreSQL, которое исправляет ошибки оценки путем неоднократного возвращения в планировщик информации, собранной в ходе исполнения запроса.

Расширение содержит три фичи:

  1. Автоматическая оптимизация плана запроса за счет неоднократного возвращения информации о ходе выполнения запроса в планировщик.
  2. Сохранение всех выработанных при оптимизации планов запросов в таблицу истории.
  3. Создание и сохранение хинтов оптимизатора с тем, чтобы иметь возможность воспроизвести выработанные планы исполнения запросов в процессе настройки.

Я верифицировал эффективность pg_plan_advsr путем запуска join order benchmark (JOB) на PG 10.4, в ходе чего наблюдалось сокращение времени исполнения запроса до 50% от первоначального. Таким образом, расширение будет полезно пользователям, который хотят настроить планировщик для OLAP и пакетной обработки данных.

В ходе презентации я расскажу о следующие моментах:

  • Принципы построения и архитектура pg_plan_advsr.
  • Подробная информация о результатах тестирования JOB.
  • Направления улучшений в будущем.
  • Совместное использование расширений aqo и pg_plan_advsr together (экспериментальное).

Слайды

Видео

Другие доклады

  • Антон Дорошкевич
    Антон Дорошкевич ИнфоСофт Руководитель ИТ
    22 мин

    Первый в России BlockChain на 1С+PostgreSQL

    В ходе доклада хотелось бы поделиться опытом реализации BlockChain в реальной бизнес-задаче на базе 1С+PostgreSQL. Откуда возникла такая задача? От кого защищаем данные с помощью технологии? Как получать отчёт о целостности цепочки в десятки миллионов записей за считанные секунды?

  • Иван Муратов
    Иван Муратов ООО "Первая Мониторинговая Компания" Технический директор
    22 мин

    PostgreSQL + PostGIS + TimescaleDB - хранилище для систем мониторинга транспорта

    PostgreSQL + PostGIS + TimescaleDB - это готовый к эксплуатации симбиоз из надежной РСУБД, мощного набора географических объектов и вычислений и работа с time-series данными. Данная связка прекрасно решает проблему хранения телеметрии, при этом оставляя в ваших руках всю экосистему PostgreSQL.

  • А
    Анна Акентьева Postgres Professional младший разработчик
    22 мин

    Autovacuum: что можно узнать, если прочитать код, а не документацию

    В докладе будут рассмотрены детали реализации автовакуума и практические выводы, следующие из них. Будет также дан краткий обзор патчей для автовакуума, которые рассматриваются сообществом разработчиков на данный момент и возможно будут включены в следующие версии PostgreSQL.

  • Александр Кузьменков
    Александр Кузьменков Postgres Professional Программист
    45 мин

    Новые планы выполнения запросов в PostgreSQL 11 и будущих версиях

    Одна из важных задач СУБД -- по декларативному SQL-запросу построить эффективный план его выполнения, используя разные алгоритмы сканирования и объединения таблиц. Над улучшением планирования запросов идёт непрерывная работа. Какие методы применяет PostgreSQL, чтобы получить эффективный план, что нового в этой области в версии 11, и что сейчас находится в разработке? Например, при планировании запроса можно удалять ненужные соединения, или сводить внешние и полусоединения к внутренним. Есть патчи, позволяющие выполнять merge join по пересечению интервалов, или улучшающие оценку селективности соединения с помощью многоколоночной статистики. Если говорить о сканировании отдельных таблиц, покрывающие индексы позволяют чаще использовать index-only scan. Инкрементальная сортировка и более точная оценка стоимости сортировки улучшают планы, где нужен сортированный вывод, например, для GROUP BY и ORDER BY или merge join. Мы обсудим эти и другие подобные оптимизации, которые уже реализованы или находятся в разработке.