title

text

Андрей Фефелов
Андрей Фефелов Mastery.pro Технический директор
11:10 02 марта
22 мин

Как обфусцировать базу в Postgres для задач нагрузочного тестирования веб-приложений

Postgres - отличная база данных для высоконагруженных веб-приложений. В свою очередь для таких веб-приложений периодически встает задача нагрузочного/стресс тестирования. Кроме очевидных сложностей: эмуляции рабочего окружения близкого к продуктовому и генерации трафика есть задача подготовки базы данных для тестового окружения. В эпоху борьбы за приватность персональных данных (152-ФЗ, GDPR, HIPAA) использование базы с прода выглядит плохой идеей. Выход один - обфусцировать данные.

Существуют различные инструменты для обфускации данных в Postgres. В докладе я расскажу, какие из них мы выбрали и почему, с какими трудностями столкнулись во время использования, насколько удачно решили задачу.

Вы узнаете возможно ли получить идентичный отклик на тестовой базе без реальных данных с прода, посмотрим графики, обсудим ограничения, которые возникают при обфускации, я познакомлю вас с нашими наработками, упрощающими задачу.

Видео

Другие доклады

  • David Steele
    David Steele Crunchy Data Principal Architect
    45 мин

    Лучшие практики для бэкапов с помощью pgBackRest

    Резервное копирование является важной частью любого решения для корпоративных баз данных, но оно часто выполняется плохо или вообще игнорируется, что может привести к потере данных в случае отказа оборудования или другого сбоя.

    В этом докладе мы рассмотрим лучшие практики резервного копирования баз данных и способы их реализации с помощью pgBackRest, в том числе:

    • архивирование и хранение журнала предзаписи (WAL);
    • частоту снятия резервных копий и срок их хранения;
    • достижение целей по времени / точке восстановления;
    • варианты конфигурации;
    • обоснование с точки зрения производительности.

  • Николай Самохвалов
    Николай Самохвалов Nombox LLC Основатель
    180 мин

    Бесшовная оптимизация запросов PostgreSQL, версия 2.0

    Существует два способа анализировать SQL-запросы:

    1. На макроуровне: в этом случае мы анализируем рабочую нагрузку как единое целое (есть три основных подхода: использование метрик из pg_stat_statements или аналогичного модуля, анализ логов с помощью pgBadger или другого похожего решения и запрос выборки в представлении pg_stat_activity).

    2. На микроуровне: в этом случае мы погружаемся в детали исполнения одного конкретного запроса (тут главную роль играет команда EXPLAIN).

    Между этими двумя подходами есть немало "белых пятен", которые обнаруживаются с ростом нагрузки. Главные проблемы:

    • Нужно переключаться между макро- и микроуровнем без больших накладных расходов.
    • Требуется надёжная проверка гипотез относительно возможных оптимизаций.
    • Есть необходимость минимизации рисков при развёртывании новой функциональности.

    Чтобы справляться с этими задачами в растущем проекте, требуется продвинутый опыт в качестве администратора баз данных, и – иногда – интуиция. Также могут помочь новые инструменты, которые (к счастью для нас!) не так давно начали появляться.

    В рамках данного мастер-класса мы разберёмся, как можно настроить процесс беспроблемной и бесшовной оптимизации SQL-запросов в вашей организации: а) какие инструменты следует выбрать в вашем конкретном случае? б) как эффективно заполнить вышеупомянутые пробелы в сфере анализа запросов?

  • Mahmoud SAKR
    Mahmoud SAKR université libre de bruxelles Professor
    Esteban Zimányi
    Esteban Zimányi ULB Профессор
    90 мин

    Управление данными подвижных объектов с MobilityDB

    MobilityDB - это расширение PostgreSQL and PostGIS для работы с движущимися объектами. В нём определяются типы данных и функции для полноценной работы с геопространственными траекториями. Основной тип данных - tgeompoint (темпоральная геометрическая точка). Она представляет собой полную траекторию движения точки - автомобиля, птицы или человека. Функция speed(tgeompoint) вычисляет скорость точки как функцию времени, в форме tfloat (темпоральное число с плавающей точкой). Подобным образом в MobilityDB определяется 6 темпоральных типов и около 300 функций. Благодаря этому, MobilityDB представляет собой весьма функциональную платформу для управления подвижными данными.

    В этом мастер-классе Вы:

    • узнаете о базах данных подвижных объектов
    • напишете SQL запросы для MobilityDB для изучения базы траекторий объектов
    • ознакомитесь с типами данных, функциями и индексами MobilityDB.

  • Henrietta Dombrovskaya
    Henrietta Dombrovskaya Braviant Holdings Зам.директора по СУБД
    45 мин

    NORM - фреймворк без ORM

    Хорошо известно, что, хотя производительность базы данных велика и каждый запрос выполняется за миллисекунды, общее время отклика приложения может быть медленным, поэтому пользователи могут долго ждать ответа. Мы знаем, что проблема не в базе данных, а в том, как разработчики приложений с ней общаются. В частности, речь идет об ORM - Object-Relational Mappers. Разработчики баз данных ненавидят их, но разработчики приложений любят их, потому что они позволяют разрабатывать приложения без каких-либо знаний о внутреннем устройстве СУБД. В результате производительность системы часто оказывается неприемлемо низкой.

    Единственный способ изменить это - предоставить разработчикам приложений такой же простой в использовании инструмент, как ORM, но позволяющий избежать распространенных ошибок ORM. Вот почему мы разработали NORM - No-ORM Framework. Во время этой презентации мы рассмотрим примеры кода из репозитория https://github.com/hettie-d/NORM и узнаем, как создавать «транспортные объекты» для эффективной передачи данных между приложениями и базами данных.