Шардман - естественный подход к шардингу в PostgreSQL
Объем данных, с которым работают современные корпоративные и интернет системы, постоянно растет. При этом все сложнее становится иметь и синхронизировать несколько копий данных в разных системах. Возникает необходимость работать с большими объемами данных непосредственно в транзакционной СУБД, Часто такое требование накладывает и логика приложений, которым необходимы результаты в реальном времени. В докладе рассмотрим какой может быть универсальная распределенная транзакционная СУБД. Разберем такие аспекты как типы нагрузки и их приоритизация, динамическое выделение ресурсов, уровень консистентности. Расскажем на каких инструментах в PostgreSQL можно построить такую систему, что у нас уже получилось и какие задачи еще предстоит решить.
Видео
Другие доклады
-
Антон Дорошкевич ИнфоСофт Руководитель Отдела-ИТ
Сжатие на уровне СУБД в реалиях 1С
В PostgresPro Enterprise есть замечательный механизм сжатия. 2020 год мною был посвящён исследованию этого механизма в реальной работе 1С. Накоплены некоторые статистические данные и конечно тонкости использования и поведения 1С по сравнению с другой популярной СУБД, которыми и хочу поделиться.
-
Daniele Varrazzo Codice Lieve Директор
Python для PostgreSQL: как его использовать и преуспеть в этом?
В рамках данного мастер-класса мы посмотрим, как обеспечить бесперебойную связь между Python и PostgreSQL. На практических примерах мы разберём, как подключиться к серверу, обеспечить обмен данными, управлять уведомлениями и транзакциями, передавая параметры безопасно и в понятной форме.
Мы рассмотрим psycopg2, наиболее часто используемую библиотеку-адаптер PostgreSQL для Python, а также анонсируем предстоящий релиз psycopg3: что останется прежним, что изменится, как лучше реализовать программу на Python, чтобы использовать PostgreSQL по максимуму.
-
Kohei KaiGai HeteroDB Главный архитектор и генеральный директор
GPU-версия PostGIS и индекса GiST
В рамках данного доклада мы представим GPU-версию PostGIS и индекса GiST, которую мы разработали в качестве новой функциональности PG-Strom.
Сегодня наши устройства (например, мобильные телефоны) динамически генерируют геолокационные данные. Это часто используют для маркетинга на основе местоположения устройства, доставки push-уведомлений, оповещения о чрезвычайных ситуациях, и так далее. Люди часто используют технологию GIS для получения данных о пользователях, находящихся в данный момент в данном месте. Даже если определения географических областей представляют собой сложные многоугольники, функции PostGIS могут генерировать правильные пересечения, однако это часто требует интенсивных вычислительных нагрузок. Графический процессор (GPU) был разработан для массовых параллельных вычислений с тысячами ядер на чип и более. Мы разработали расширение PG-Strom для частичного выполнения SQL-запросов на устройствах GPU. В новом релизе PG-Strom v3.0 будет добавлена поддержка для нескольких функций PostGIS и GiST-индексов для выполнения ресурсоёмких вычислений с обработкой геолокационных данных.
В рамках этого доклада мы расскажем о создании этой технологии, её использовании, реализации и представим результаты сравнительного тестирования для GPU-версии PostGIS и GiST-индекса.
-
Николай Рыжиков Health Samurai CTO
SQL данными
Почти каждое бизнесс приложение является в значительной степени генератором запросов к базе данных. Как можно легко строить запросы и делать их композицию? В этом докладе я расскажу про интересный подход из мира clojure, в котором sql записывается "данными" (data dsl) и какие возможности это открывает - от композиции и безопасного sql до макросов и анализа запросов.