Другие доклады
-
Максим Орлов Postgres Professional разработчик
Горячее минорное обновление в Postgres Pro13
Обновление минорных версий Postgres Pro без остановки сервера и остановки активных сессий.
-
Yugo Nagata SRA OSS, Inc. Japan Chief Scientist
Автоматическое инкрементальное обновление материализованных представлений
Материализованное представление служит для хранения результатов запросов определения представления в БД, чтобы добиться более быстрого ответа на запрос. Однако данные в представлении устаревают после изменения базовых таблиц. Следовательно, для поддержания актуальности содержимого необходимо обновлять представление. В PostgreSQL есть команда REFRESH MATERIALIZED VIEW для обновления материализованного представления, но эта команда вычисляет его содержимое с нуля, что неэффективно в случаях, когда изменяется только небольшая часть базовой таблицы.
Инкрементальное обновление представлений (IVM) - это метод эффективного обновления материализованных представлений, который вычисляет и применяет к материализованным представлениям только инкрементальные изменения вместо повторного вычисления. Эта функциональность требуется для быстрого обновления материализованных представлений, но еще не реализована в PostgreSQL.
Поэтому мы разработали IVM для PostgreSQL и предлагаем реализовать его в качестве основной функции. Патч сейчас обсуждается в списке рассылки hackers. Наша реализация делает возможным автоматическое инкрементальное обновление материализованных представлений при изменении базовой таблицы. Вам не нужно писать собственную триггерную процедуру для обновления представлений. После продолжительной работы нашей команды текущая реализация IVM поддерживает некоторые возможности аггрегации, подзапросы, соединение одной таблицы (self-join), внешние соединения (outer join) и CTE (предложения WITH) в запросе определения представления. Результат оценки производительности с использованием запросов TPC-H показывает, что наша реализация IVM может обновлять материализованное представление в 200+ раз быстрее, чем повторное вычисление с помощью команды REFRESH.
В данном докладе мы опишем нашу реализацию IVM и ее возможности.
-
Fabrízio Mello OnGres Inc Разработчик PostgreSQLÁlvaro Hernández OnGres Founder
Сетевой фильтр PostgreSQL для EnvoyProxy
Как вы осуществляете мониторинг Postgres? Какую информацию вы собираете и насколько она помогает решать возникающие проблемы? Что если вам хочется или нужно логировать все запросы? Высоконагруженные базы данных могут выйти из строя при таком подходе.
В OnGres мы стараемся сделать СУБД PostgreSQL более прозрачной для мониторинга. Поэтому мы вместе с командой Tetrate работали над Сетевым фильтром Envoy для PostgreSQL, расширением, призванным обеспечить и улучшить прозрачность для мониторинга входящего трафика в кластерной инфраструктуре. Это бесплатное расширение с открытым исходным кодом доступно для всех участников сообщества. Вы можете использовать его везде, где пользуетесь Envoy. Оно позволит вам автоматически собирать статистику и устранять проблемы сетевого трафика. Данный доклад обеспечит глубокое погружение в декодирование протокола PostgreSQL и прокси-фильтры Envoy. В рамках этого выступления также будут рассмотрены все возможности сетевого фильтра, его развёртывание и использование в любом окружении.
Полезные ссылки:
-
Robert Haas EnterpriseDB Вице-президент, руководитель исследований в сфере СУБД
Повреждение данных: как его избежать, обнаружить и обеспечить восстановление
Повреждение данных в PostgreSQL может происходить по ряду причин, в числе которых аппаратные ошибки, программные сбои и ошибки пользователя. В данном докладе я расскажу о своём опыте работы с повреждёнными базами. В частности, я упомяну о частых причинах повреждения данных в базе, среди которых процедурные ошибки при снятии резервных копий или восстановлении из них. Также я остановлюсь на частых последствиях повреждения данных в базе - например, ошибках, которые говорят о несоответствии между таблицей и ее индексами либо таблицей и TOAST-таблицей. Также я уделю некоторое внимание техникам, которые используют для восстановления базы или исправления ошибок после повреждения данных, в том числе моему опыту использования pg_resetxlog. Основой для данного доклада послужили реальные кейсы, с которыми я сталкивался в ходе работы с клиентами EnterpriseDB. Надеюсь, что они будут полезны разработчикам PostgreSQL для возможных улучшений этой СУБД, а пользователи получат представление о том, как избежать повреждения данных, обнаруживать его, если оно произошло, и справляться с ним.