title

text

Mahmoud SAKR
Mahmoud SAKR université libre de bruxelles Professor
Esteban Zimányi
Esteban Zimányi ULB Профессор
11:40 03 марта
90 мин

Управление данными подвижных объектов с MobilityDB

MobilityDB - это расширение PostgreSQL and PostGIS для работы с движущимися объектами. В нём определяются типы данных и функции для полноценной работы с геопространственными траекториями. Основной тип данных - tgeompoint (темпоральная геометрическая точка). Она представляет собой полную траекторию движения точки - автомобиля, птицы или человека. Функция speed(tgeompoint) вычисляет скорость точки как функцию времени, в форме tfloat (темпоральное число с плавающей точкой). Подобным образом в MobilityDB определяется 6 темпоральных типов и около 300 функций. Благодаря этому, MobilityDB представляет собой весьма функциональную платформу для управления подвижными данными.

В этом мастер-классе Вы:

  • узнаете о базах данных подвижных объектов
  • напишете SQL запросы для MobilityDB для изучения базы траекторий объектов
  • ознакомитесь с типами данных, функциями и индексами MobilityDB.

Видео

Другие доклады

  • Василий Пучков
    Василий Пучков ООО Главный эксперт
    45 мин

    Разработка интеграционной базы производственных данных нефтебаз на базе PostgreSQL

    Архитектурный подход как основа устойчивого решения. Старые и новые технологии - единство и борьба противоположностей. Информационная безопасность и требования бизнеса - есть ли компромисс?

  • Amit Kapila
    Amit Kapila Fujitsu Senior Director
    45 мин

    Как будет развиваться логическая репликация?

    Логическая репликация в PostgreSQL доступна начиная с версии 10.0, и с каждым новым релизом она улучшается. Мы начнём доклад с обсуждения базовой архитектуры логической репликации в PostgreSQL, а затем перейдём к различным способам её использования.

    Одним из недостатков логической репликации по сравнению с физической является невозможность репликации транзакции до момента коммита. Для транзакций, которые выполняются продолжительное время, это может привести к серьёзной задержке на стороне реплики. Мы обсудим, какое решение этой проблемы реализовано в PostgreSQL.

    Мы также остановимся на других крупных разработках в области логической репликации, которые позволят осуществлять потоковую передачу транзакций в заранее заданное время. Это позволит реализовать логическую репликацию без конфликтов. Это также можно будет использовать для масштабирования чтения. Благодаря протоколу 2PC мы сможем убедиться, что реплики получили все данные, закоммиченные на мастере. Теперь мы можем спроектировать систему, где определённые узлы являются владельцами некоторого набора таблиц. Так мы всегда сможем получить данные этих таблиц с этих узлов, а также установить некий внешний процесс для учитывающей это маршрутизации для операций чтения.

    В конце доклада мы перечислим новые улучшения, связанные с логической репликацией и вошедшие в недавние релизы PostgreSQL.

  • Иван Фролков
    Иван Фролков Postgres Professional инженер-консультант
    22 мин

    Constraints или о том, как попытаться спокойно жить

    Часто можно услышать, что ограничения целостности снижают производительность, все время мешают в работе и вообще в целом бесполезны, база - это всего лишь хранилище и вообще там не должно быть никакой логики. Я расскажу, почему это не так и чем может обернуться такой бездумный подход.

  • Николай Самохвалов
    Николай Самохвалов Nombox LLC Основатель
    45 мин

    Автоматическое тестирование изменений БД (DDL, DML)

    В высоконагруженном проекте любое изменение несёт в себе заметные риски сбоя или деградации производительности. Мы видим, как растёт сложность систем, количество серверов БД, релизов в неделю, автоматизация всего и вся в CI/CD pipelines, контейнерах, Kubernetes.

    Но вот когда речь заходит о тестировании изменений в БД — от банального добавления индекса до сложных, почти «хирургических» операций вроде замены в первичного ключа int4 на int8 в многотерабайтной таблице под нагрузкой — тут налицо отставание технологий и методологий. В лучшем случае изменения проверяются визуально, и тут уж всё зависит от опыта и усталости проверяющего.

    В докладе мы расскажем как мы (Postgres.ai) закрываем этот вопрос с помощью нашего решения Database Lab:

    • моментальная выдача независимых тонких клонов для многотерабайтных БД, готовых к проверкам,
    • интеграция в существующие CI/CD-инструменты и рабочий процесс,
    • сбор метрик, наиболее важных для принятия решения об одобрении/отклонении изменения (и даже автоматическое отклонения совсем опасных действий).