title

text

Константин Книжник
Константин Книжник Postgres Professional Ведущий разработчик
13:15 04 февраля

Менеджер распределённых транзакций для кластера PostgreSQL

В корпоративных информационных системах от СУБД требуется поддержка кластеров, для обеспечения требуемого уровня масштабирования и надёжности. К сожалению, многочисленные попытки реализовать кластеры для Постгреса, такие как Postgres-XL/XC, так и не были доведены до коммерческого уровня и не были приняты сообществом. Другие существующие решения, например, pg_shard, plproxy не поддерживают глобальных ACID транзакций. Наша команда разработала менеджер распределённых транзакций (DTM) как расширение Постгреса, позволяющее достичь глобальной целостности для нескольких экземпляров Постгреса, объединённых в один кластер. DTM - это конструктор, позволяющий реализовать различные решения на его основе. В качестве демонстрации возможностей DTM мы интегрировали его в pg_shard и postgres_fdw. Мы надеемся, что наш подход с расширяемым менеджером транзакций будет включён в версию 9.6 Постгреса и позволит разрабатывать различные кластерные решения на его основе.

Слайды

Видео

Другие доклады

  • Магнус  Хагандер
    Магнус Хагандер PostgreSQL Global Development Group Разработчик и коммиттер

    О структуре и эволюции сообщества PostgreSQL

    В отличие от большинства других баз данных, PostgreSQL разрабатывается сообществом, не компанией и даже не фондом. Те, кто участвуют в этом сообществе уже долгое время, обычно считают это преимуществом, но для людей со стороны, привыкших иметь дело с традиционными организациями, это часто бывает непонятно. Для тех, кто ещё не внутри, вместе с нами, в этом докладе будет рассказано, как работает сообщество PostgreSQL, как взаимодействуют различные группы, а также, как всё это изменилось за последние годы.

  • Д
    Дмитрий Мельник ИСП РАН разработчик
    22 мин

    Ускорение исполнения запросов в PostgreSQL с использованием JIT-компилятора LLVM

    В настоящее время в PostgreSQL для исполнения SQL-запросов используется интерпретатор. Это приводит к накладным расходам, связанным с неявными вызовами функций-обработчиков и проверок, которых можно было бы избежать при создании исполняемого кода "на лету" (JIT-компиляции) под конкретный SQL-запрос: в этом случае во время выполнения уже известна структура используемых таблиц и типы данных. Особенно это актуально для сложных запросов, где производительность процессора является основным ограничением. В настоящий момент существует два известных проекта, реализующих JIT-компиляцию в PostgreSQL: коммерческое решение Vitesse DB и open-source проект PGStorm. В первом проекте за счет использования LLVM JIT авторам удается получить ускорение до 8 раз на тестах из набора TPC-H. Второй проект реализует JIT-компиляцию запроса с использованием CUDA для исполнения его на GPU, что позволяет ускорить выполнение некоторых типов запросов на порядок.

    Наша работа посвящена добавлению поддержки JIT-компиляции SQL-запросов в PostgreSQL с использованием компиляторной инфраструктуры LLVM. В докладе будет подробно рассмотрено, как JIT-компиляция может быть использована для ускорения различных этапов исполнения SQL-запросов, а также особенности трансляции SQL-запросов в LLVM-биткод для получения эффективного исполняемого кода. Также будут представлены предварительные результаты тестирования JIT-компилятора на наборе тестов TPC-H.

  • Heikki Linnakangas
    Heikki Linnakangas Pivotal PostgreSQL hacker

    Внутреннее устройство индексов

    PostgreSQL поддерживает несколько типов индексов: GiST, SP-GiST, GIN и, конечно, обычное B-дерево. Администраторы БД знают, когда применять каждый из них: GIN для полнотекстового поиска, GiST для геометрических данных и т. д., но как они устроены внутри? Благодаря чему они хорошо работают в сценариях использования, для которых предназначены? В этой презентации я познакомлю вас с внутренней структурой каждого из этих типов индексов и расскажу, каковы их сильные и слабые стороны.

  • Николай Шаплов
    Николай Шаплов Postgres Professional Fuzzing Engeener
    90 мин

    «Что у него внутри» - хранение данных на низком уровне

    Знание внутреннего устройства СУБД на уровне хранения данных позволяет ускорить её работу и уложить данные более компактно. На данном мастер-классе будет представлен инструмент pageinspect, одним из разработчиков которого недавно стал московский программист Николай Шаплов. На практике этот инструмент будет использован для изучения того, как в БД лежат данные и как их можно разложить оптимально. Будут и задачи для самостоятельного исследования.