title

text

Вадим Яценко
Вадим Яценко Tantor Lab Генеральный директор
Сергей Ким
Сергей Ким Ingram Micro Cloud Software Architect
13:00 06 февраля
45 мин

PostgreSQL High Availability кластер для Enterprise

В последнее время PostgreSQL все чаще используется для Enterprise. Наша компания Ingram Micro Cloud была одной из первых, кто сделал это. Мы уже много лет используем PostgreSQL в качестве основной СУБД для наших продуктов. В докладе мы хотим рассказать об эволюции нашего High Availability (HA) кластера PostgreSQL: как мы в сжатые сроки внедряли решение на pgpool-II, писали failover сценарии, тестировали Postgres-XL и придумывали необычные конфигурации Stolon. Немного поговорим о проблемах балансировки нагрузки, пуллинга соединений и бекапировании.

Слайды

Видео

Другие доклады

  • Константин Книжник
    Константин Книжник Postgres Professional Ведущий разработчик
    45 мин

    VOPS: Векторное расширение Постгреса

    СУБД Постгрес успешно используется во многих OLTP приложениях, выполняющих большое число простых запросов. Но для аналитики, требующей обработки большого количества данных, Постгрес на порядки отстаёт от специализированных СУБД, оптимизированных для массовой обработки данных. Скорость работы Постгреса для OLAP запросов сдерживается следующими факторами:

    • Большие накладные расходы на распаковку записей.
    • Затраты на интерпретацию запроса (Постгрес интерпретирует план выполнения запроса)
    • Поддержка работы с абстрактными типами
    • Недостатки PULL модели выполнения запроса
    • Издержки MVCC

    Все эти проблемы могут быть в большой степени решены за счёт использования векторного исполнителя запросов, который за одну операцию в состоянии обработать целый блок (вектор) значений. В этом докладе описывается способ добавления векторных операций в Посгрес, с помощью стандартного механизма расширения Посгреса, без внесения изменений в ядро. Такие механизмы Посгреса как UDT (определяемые пользователем типы), FDW (абстракция внешнего поставщика данных), расширения исполнителя запросов позволяют реализовать в Постгресе вертикальный таблицы, с которыми можно работать как с обычными таблицами. Но на порядки быстрее благодаря использованию векторных операций.

  • Александр Кукушкин
    Александр Кукушкин Zalando SE Database Engineer
    Алексей Клюкин
    Алексей Клюкин Zalando SE Database Engineer
    180 мин

    Мастер-класс: Управление высокодоступными PostgreSQL кластерами с помощью Patroni

    Patroni - это Python-приложение для создания высокодоступных PostgreSQL кластеров на основе потоковой репликации. Оно используется такими компаниями как Red Hat, IBM Compose, Zalando и многими другими. С его помощью можно преобразовать систему из ведущего и ведомых узлов (primary - replica) в высокодоступный кластер с поддержкой автоматического контролируемого (switchover) и аварийного (failover) переключения. Patroni позволяет легко добавлять новые реплики в существующий кластер, поддерживает динамическое изменение конфигурации PostgreSQL одновременно на всех узлах кластера и множество других возможностей, таких как синхронная репликация, настраиваемые действия при переключении узлов, REST API, возможность запуска пользовательских команд для создания реплики вместо pg_basebackup, взаимодействие с Kubernetes и т.д.

    Слушатели мастер-класса подробно узнают, как работает Patroni, получат практические навыки настройки высокодоступных кластеров на его основе, познакомятся с различными дополнительными возможностями и поучаствуют в диагностике проблем. Будут рассмотрены следующие темы:

    • область применения: какие задачи HA успешно решаются Patroni
    • обзор архитектуры
    • создание тестового кластера
    • утилита patronictl
    • изменение конфигурации PostgreSQL для кластера, управляемого Patroni
    • мониторинг с помощью API
    • подходы к переключению клиентов
    • дополнительные возможности: ручное переключение, перезагрузка по расписанию, режим паузы
    • настройка синхронной репликации
    • расширяемость и универсальность
    • частые ошибки и их диагностика

    Для полного участия в мастер-классе вам понадобится ноутбук с установленным git, vagrant и virtual box.

    Vagrant можно загрузить со страницы https://www.vagrantup.com или установить с помощью пакетов в вашем дистрибутиве. Virtualbox: https://www.vagrantup.com

    После установки Vagrant и Virtualbox нужно выполнить:

    $ git clone https://github.com/alexeyklyukin/patroni-training
    $ cd patroni-training
    $ vagrant up
    

    После того, как patroni box поднимется и установит необходимые пакеты к нему можно подключиться с помощью vagrant ssh.

  • Антон Дорошкевич
    Антон Дорошкевич Инфософт Руководитель отдела ИТ
    45 мин

    1С-Батл. PostgreSQL vs MS SQL

    Сравнение возможностей PostgreSQL и MS SQL для работы с 1С. Что даёт pg_restore для 1С-ника. Результаты нагрузочного тестирования "Восстановления последовательности партионного учёта" на базе 1С размером более 1 ТБ. 2 года, 500+ баз 1С, 4ТБ данных, Каскадная репликация - История одного Production 1C

  • Olivier Courtin
    Olivier Courtin DataPink Owner & DataScientist
    180 мин

    Мастер-класс: продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python

    На мастер-классе будут рассмотрены: продвинутый анализ пространственных данных на чистом PostGIS, включая новейшие функции PostGIS; приведение в соответствие разных типов данных в PostgreSQL и Python (массивы в NumPy, таблицы в Pandas); секреты эффективной работы с инструментами и средами обработки данных (Jupyter, dataviz и др.); дальнейшее развитие с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.