title

text

Олег Алексеев
Олег Алексеев МойСклад Технический директор
17:00 17 марта
22 мин

Полуавтоматические конверсии схемы данных в МойСклад

В процессе построения и эксплуатации сервиса МойСклад был разработан и поддерживается механизм для полуавтоматической корректировки схемы базы данных. В докладе - история появления и развития, варианты поддерживаемых конверсий.

ВИДЕО

Слайды

Другие доклады

  • Дмитрий Юхтимовский
    Дмитрий Юхтимовский Gilev.ru технический лидер
    45 мин

    Поиск проблемного кода 1С на СУБД PostgreSQL

    1. Особенности взаимодействия 1С:Предприятие 8 и PostgreSQL 9 1.1 Изменения в редакциях платформы 1С 1.2 Схемы v81c_data и v81c_index 1.3 Трансляция запросов 1С в SQL 1.4 События технологического журнала 1С для диагностики PostgreSQL
    2. Анализ запросов, вызывающих проблемы производительности в PostgreSQL 2.1 Бесплатный инструмент для автоматизации разбора логов 2.2 Правило Парето на практике 2.3 Установка и настройка инструмента 2.4 Практический пример оптимизации запроса 2.4.1 Проблема в запросе PostgreSQL 2.4.2 Выяснение нерациональных операций в запросе 2.4.3 Способы устранения неоптимальностей
    3. Статистка PostgreSQL для диагностики производительности 3.1 Сравнение с возможностями MS SQL Server, различия 3.2 Диагностика блокировок 3.3 Диагностика рабочей нагрузки 4 Примеры из практики команды gilev.ru

  • Дмитрий Мельник
    Дмитрий Мельник ИСП РАН разработчик
    22 мин

    Динамическая компиляция SQL-запросов в PostgreSQL с использованием LLVM JIT

    В данный момент в PostgreSQL для исполнения SQL-запросов применяется интерпретатор, реализующий модель итераторов (Volcano-модель). В то же время можно добиться существенного ускорения, выполняя динамическую компиляцию запроса «на лету». В этом случае можно генерировать код, специализированный для конкретного SQL-запроса, а также применять компиляторные оптимизации, учитывая, что во время выполнения уже известна структура используемых таблиц и типы данных. Такой подход особенно актуален для сложных запросов, скорость выполнения которых ограничена производительностью процессора.

  • Иван Панченко
    Иван Панченко Postgres Professional рзаместитель генерального директора
    22 мин

    Два года профессионального постгреса

    Краткий рассказ о том, чего за 2 года работы добилась компания Postgres Professional.

    • наши достижения в разработке PostgreSQL.
    • что такое российская СУБД Postgres Pro и как она соотносится с PostgreSQL
    • что такое Postgres Pro Enterprise и почему Enterprise.
    • что с учебными курсами и сертификацией?

    ВИДЕО

  • Вадим Яценко
    Вадим Яценко ООО Прогресс Софт Начальник Отдела разработки систем хранения данных
    45 мин

    Очень большие таблицы в PostgreSQL. Или как превратить 60+ Tb в 10+ Tb

    В докладе будет рассказано о том, как мы реализовали хранение таблиц с большим количеством строк (1 млрд + строк в сутки). Проект существует в production 2 год. Это крупный транспортный проект всероссийского масштаба.

    Суммарный объем данных 300 Tb на 25 серверах PostgreSQL * 2 Data Center. Будет рассказано об ошибках организации хранения больших таблиц на начальном этапе проекта, и о том как эти ошибки были устранены. Так же расскажу о том, как организована ротация данных и архивирование. Затрону вопросы о том, чего нам не хватало в PostgreSQL 9.4 из того, что появилось в 9.5 и в 9.6. А так же, какие новые возможности, нам хотелось бы увидеть в новых релизах PostgreSQL.