title

text

Антон Сикерин
Антон Сикерин ООО "Транспортная интеграция" Специалист по транспортному планированию, Инженер-программист
11:30 17 марта
22 мин

PostgreSQL в задачах транспортной аналитики при проектировании мастер-плана для ЧМ-2018 в Екатеринбурге

1) О Чемпионате мира по футболу 2018 и поставленных задачах; 2) Инструментарий отдела моделирования и аналитики; 3) Аналитика пассажиропотоков аэропорта Кольцово и железнодорожного транспорта дальнего и ближнего сообщения (Яндекс.Расписания); 4) Анализ населенности и занятости населения (2ГИС); 5) Прокладка маршрутов клиентских групп с автоматическим выводом метаинформации и сборка отчетных материалов (PostgreSQL + QGIS + Python + LaTeX); 6) Развертывание карт-сервера для предоставления доступа к маршрутам заказчику (Ubuntu + PostGIS + QGIS-Web-Client)

ВИДЕО

слайды

Другие доклады

  • Камиль Исламов
    Камиль Исламов Stickeroid Ai CTO
    22 мин

    Совместное использование хранимых процедур Postgres и ORM на примере Django

    Приводятся некоторые примеры и приёмы в проектировании архитектуры Web-приложений с совместным использованием технологий ORM с применением хранимых процедур Postgres на примере Python Django. Рассматриваются варианты реализации бизнес-логики в рамках СУБД с сохранением преимуществ Django и применения встроенной админ-панели.

    ВИДЕО

  • Алексей Мергасов
    Алексей Мергасов НОКСА Дата Лаб Директор по разработке
    22 мин

    Эффективная работа с 10+ ПБ данных в PostgreSQL или новая парадигма построения "бережливых" инфраструктур данных для Data-Driven Enterprise

    Алексей расскажет о технических деталях и опыте применения подхода экстремальной нормализации данных для создания инфраструктур данных с уникальными потребительскими характеристиками. В сравнении с решениями лидеров рынка такие инфраструктуры обладают, например, такими преимуществами, как: - оперативная обработка 10 ПБ данных и больше, - в 2-6 раз более высокая производительность, - сквозная 100% консистентность данных, - практически линейная горизонтальная масштабируемость, - в 4-10 более низкая стоимость владения, - и т. д. Изложенный подход уже нашел применение за пределами России в решениях для операторов связи, ритейла, финтеха, современном производстве (Industry 4.0, индустриальный IoT), в государственном секторе.

    ВИДЕО

  • Дмитрий Мельник
    Дмитрий Мельник ИСП РАН разработчик
    22 мин

    Динамическая компиляция SQL-запросов в PostgreSQL с использованием LLVM JIT

    В данный момент в PostgreSQL для исполнения SQL-запросов применяется интерпретатор, реализующий модель итераторов (Volcano-модель). В то же время можно добиться существенного ускорения, выполняя динамическую компиляцию запроса «на лету». В этом случае можно генерировать код, специализированный для конкретного SQL-запроса, а также применять компиляторные оптимизации, учитывая, что во время выполнения уже известна структура используемых таблиц и типы данных. Такой подход особенно актуален для сложных запросов, скорость выполнения которых ограничена производительностью процессора.

  • Дмитрий Вагин
    Дмитрий Вагин Avito Lead Engineer
    22 мин

    Мониторинг PostgreSQL в Авито, с примерами

    Небольшой доклад о том как Avito собирает и мониторит нагрузку на базы данных. Отправка метрик из хранимых процедур в Graphite. Сбор метрик pg_stat* и отображение их в Grafana. Примеры из жизни.

    ВИДЕО