PostgreSQL на 20TB и выше
В последние шесть месяцев я работал с массивным OLAP окружением, охватывающим порядка 400TB данных. Приходите и узнайте, как мы заставили это все работать, с какими трудностями сталкивались и какие навыки нам потребовались.
Этот доклад будет иметь мало общего с докладом про 10TB и выше, так как среды данных значительно отличаются. Мы рассмотрим эффективность аналитики, выравнивание данных, причины для разработки расширений на С, перемещение данных между серверами в нескольких центрах обработки данных.
Слайды
Видео
Другие доклады
-
Брюс Момжиан EnterpriseDB Senior Database Architect
Изучаем CTE и оконные функции
От разработчиков часто требуются результаты, которые трудно получить обычными SQL-запросами. К счастью, стандартом SQL предусмотрены мощные средства - общие табличные выражения (CTE) и оконные функции, который весьма расширяют круг возможного.
SQL является декларативным языком, что означает, что пользователь только формирует запрос, с база данных определяет, как его следует оптимально исполнять. CTE позволяют запросам быть более императивными, дают возможность организовать циклы и обработку иерархических структур, что обычно делается только в императивных языках.
Обычные SQL-запросы возвращают наборы строк, в которых одна строка не зависит от других. Оконные функции позволяют добавлять в запрос поля, значения которых зависят от других строк.
Этот мастер-класс поможет прикладным разработчикам в использовании CTE, что позволит перенести часть логики из приложения в SQL-код, и разъяснит возможности оконных функций и особенности их использования.
Видео
Часть I «Programming the SQL Way with CTE»
Часть II «Postgres Window Magic»
-
Камиль Исламов Stickeroid Ai CTO
PostgreSQL и MQTT в качестве системы обработки IoT данных
MQTT - это эффективный протокол обмена данными для IoT устройств. Построенная с помощью доработанного EMQTT плагина, архитектура IoT проекта использует PostgreSQL в качестве центра обработки и хранения данных, поступающих от сенсоров в реальном времени. В докладе будет представлен пример решения программно-аппаратной платформы IoT, реализованного на базе протокола MQTT, где PostgreSQL выполняет ключевые функции, обеспечивая оперативный учёт, сбор и хранение данных от распределённой сети IoT устройств.
-
Алексей Лесовский Data Egret PostgreSQL DBA
Давайте отключим vacuum?!
Такой призыв часто возникает, когда в PostgreSQL возникают проблемы, и главным подозреваемым оказывается vacuum. По опыту, многие наступают на эти грабли, и мне с коллегам по Data Egret нередко приходится разгребать последствия, так как потом всё становится ещё хуже. Но если обратить внимание на сам vacuum, то, пожалуй, нет такого человека, который бы использовал Postgres, и при этом ничего не знал про вакуум. Ведь история вакуума начинается относительно давно, и в интернете можно найти массу как старых, так и новых постов про вакуум, объемные дискуссии в списках рассылки. Несмотря на то, что тема вакуума подробно описана в официальной документации к PostgreSQL, новые посты и новые дискуссии будут появляться и дальше. Возможно, поэтому с вакуумом связано очень много мифов, баек, страшилок и заблуждений. Между тем, вакуум является одним из важнейших компонентов PostgreSQL, и его работа напрямую сказывается на производительности. В одном докладе невозможно рассказать про вакуум абсолютно всё, но я бы хотел раскрыть ключевые моменты, связанные с вакуумом, такие как его внутреннее устройство, основные подходы к его настройке, наблюдение за производительностью, мониторинг, и что делать в случае, когда вакуум - главный подозреваемый во всех бедах. Ну и, конечно же, хочется развеять распространенные мифы и заблуждения, связанные с вакуумом.
-
Григорий Смолкин Ozon Инженер
Резервное копирование PostgreSQL с помощью pg_probackup: высокая производительность и острая форма паранойи
Как бэкапировать PostgreSQL? Как хранить сделанные бэкапы? Как валидировать бэкап? Как валидировать PostgreSQL и можно ли ему вообще доверять? Можно ли доверять твоему инструменту? Как сделать всю эту паранойю удобной и производительной, если СУБД не помогает в этом деле? На какие компромиссы можно идти и на какие ни в коем случае нельзя? Создавая свой инструмент бэкапирования, мы были вынуждены искать ответы на эти и многие другие вопросы, о чем и хотелось бы рассказать.