
Мастер-класс: Больше индексов, хороших и разных
"Не мог он GIN от SP-GiST-а, как мы ни бились, отличить", говорил классик. А вы можете? Этот мастер-класс посвящен индексам, которые хоть и не так часто используются, как обычное B-дерево, но могут сильно выручить в трудную минуту. Мы посмотрим, как устроены эти индексы и в каких случаях они могут быть успешно применены. Заодно поговорим и об особенностях индексного доступа в PostgreSQL. Чтобы провести время с пользой, от слушателей потребуется некоторое знакомство с PostgreSQL и умение читать планы несложных запросов.
Материалы мастер-класса
Резервную копию БД с демонстрационными данными можно скачать тут:
- Восстановление с помощью pg_restore (338 MB)
Слайды
Видео
Другие доклады
-
ННиколай Ларин Microsoft Program Manager
Azure Database for PostgreSQL – как мы сделали глобальный масштабируемый сервис
Azure Database for PostgreSQL - управляемый сервис баз данных на основе PostgreSQL Community Edition. Мы расскажем об архитектуре сервиса и реализации ключевых преимущств PostgreSQL сервиса в Azure, таких как высокий уровень доступности, масштабирование сервиса, встроенная защита и автоматическое резервное копирование. Включает демонстрацию возможностей сервиса с облачными приложениями и интеграцию с другими сервисами Azure.
-
Olivier Courtin DataPink Owner & DataScientist
Продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python
PostGIS на протяжении двух десятилетий завовевал известность как лучшее опенсорсное решение для анализа пространственных данных. В докладе я остановлюсь на продвинутом анализе пространственных данных с помощью PostGIS, расскажу о дальнейшем развитии с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.
-
Александр Алексеев Postgres Professional Software Developer
PostgreSQL и пожатые документы
Одно из преимущество документо-ориентированных баз данных, таких как MongoDB и Cochbase, перед РСУБД заключается в возможности изменять схему данных легко, быстро и часто. Традиционный подход мира РСУБД заключается в использовании дорогостоящего ALTER TABLE, медленной миграции существующих данных, и подобных вещей. Этот подход часто слишком медлен и неудобен для разработчиков приложений.
Для решения описанной проблемы PostgreSQL предоставляет типы JSON и JSONB. Также существуют расширения zson, pg_protobuf и другие. Из этого доклада вы узнаете, как пользоваться описанными решениями, каковы их сильные и слабые стороны, и т.д. Также вы узнаете о связанных работах, которые сейчас находятся в процессе.
-
Иван Картышов Postgres Professional Разработчик ядраДмитрий Иванов Postgres Professional Developer
Басня про тестирование и postgres
Однажды вот Питон и Слон
Вести тестирование взялись.
И вместе все в него впряглись!В нашей компании (Postges Professional) разрабатываются разные проекты: multimaster, pg_probackup, pg_pathman, pg_shardman, RUM, и другие. Совладать со всей этой оравой весьма непросто, поэтому нам необходим инструмент, который способен облегчить и ускорить написание всевозможных тестов.
В данном докладе мы расскажем о фреймворке testgres, написанном на Python, который уже позволил решить множество проблем и протестировать функциональность, которую нельзя так просто покрыть прямолинейными регрессионными тестами.
Вы узнаете, как при помощи нескольких строчек кода запускать узлы PostgreSQL, настраивать всевозможную репликацию и создавать бекапы, меняя параметры на лету, и про многое другое. Также мы расскажем, как эти возможности позволяют нам проверять "самые труднодоступные места" и улучшать качество наших продуктов.
Мы стремимся сделать testgres фреймворком для проведения функциональных тестов пользовательских запросов, хранимых процедур и прочей серверной логики, привнося практику TDD на уровнь разработки БД.