title

text

Olivier Courtin
Olivier Courtin DataPink Owner & DataScientist
12:15 06 февраля
45 мин

Продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python

PostGIS на протяжении двух десятилетий завовевал известность как лучшее опенсорсное решение для анализа пространственных данных. В докладе я остановлюсь на продвинутом анализе пространственных данных с помощью PostGIS, расскажу о дальнейшем развитии с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.

Слайды

Видео

Другие доклады

  • Александр Коротков
    Александр Коротков Postgres Professional Руководитель разработки
    45 мин

    Подключаемые хранилища

    Тема подключаемых хранилищ для PostgreSQL стала уже притчей во языцех. Период споров о том, нужны ли подключаемые хранилища, или нет закончился. Позиции скептиков, говорящих, что подключаемые хранилища не нужны, поскольку являются источником неконсистентного поведения СУБД, заметно ослабли после критики реализации MVCC в PostgreSQL со стороны Uber'а. Стало понятно, что подключаемые хранилища нужны как-минимум для альтернативной реализации MVCC через undo-лог, и это стало одним из ориентиров для проектирования интерфейса.

    На текущий момент работа над подключаемыми хранилищами перешла в практическую плоскость: ведётся тред, в котором несколько человек разрабатывают набор патчей, и ещё больше делают ревью.

    В данном докладе будут рассмотрены следующие вопросы:

    • обзор получившегося интерфейса для подключаемых хранилищ;
    • изменения в ядре PostgreSQL, которые потребовались для реализации данного интерфейса;
    • текущие и потенциальные применения данного интерфейса, включая heap с undo-логом и in-memory OLTP движок;
    • текущее состояние патчей и перспектива их принятия в ядро;
    • дальнейшее развитие интерфейса с целю расширения возможностей подключаемых хранилищ (columnar, index-organized, LSM и т.д.).

  • Максим Соболевский
    Максим Соболевский JetBrains Менеджер по марткеингу
    45 мин

    DataGrip: IDE для PostgreSQL от JetBrains

    JetBrains 15 лет производит среды разработки для работы со многими языками программирования. Самая популярная из них – IntelliJ IDEA для java, но она поддерживает и базы данных. В какой-то момент мы решили, что эту функциональность и глубокий опыт компании в работе с языками можно привнести и в мир SQL – так появилась среда разработки DataGrip. В докладе я расскажу о том, как DataGrip помогает писать код и работать с данными быстро, как расширить самому функциональность инструмента и постараюсь выяснить, какие проблемы в инструментарии актуальны для российского PostgreSQL сообщества.

  • Анатолий Солдатов
    Анатолий Солдатов Компания - ЗАО ЛАНИТ Старший разработчик баз данных
    22 мин

    Как деплоить в 5 раз быстрее или рассказ о нашей реализации параллельного выполнения миграций в Liquibase

    Liquibase - очень удобный инструмент последовательных миграций баз данных, используемый как на наших проектах, так и в большом числе других проектов и фреймворков. Он позволяет держать код базы вместе с кодом приложения в VSC, отслеживать попытки повторных миграций и много-много чего еще. Но рано или поздно проект вырастает, данные занимают терабайты, а liquibase все еще накатывает миграции последовательно.

    Мы не смогли позволить себе деплоиться по 100 часов и придумали тулзу (фреймворк) для liquibase, которая расширяет его возможности и позволяет выполнять паралллельно целый ряд скриптов или разбивать одну большую миграцию на маленькие партиции и параллельно мигрировать их.

  • Кирилл Боровиков
    Кирилл Боровиков ООО "Компания "Тензор" Технический директор
    45 мин

    explain.sbis.ru - массовая оптимизация запросов

    Как оптимизировать производительность запросов в PostgreSQL? Как это делать, если серверов - сотни, а баз - тысячи? В "Тензоре" мы разработали для этого отдельный инструмент - explain.sbis.ru: - для синхронного сбора и анализа запросов - для визуализации планов выполнения - для мониторинга ошибок в БД