Продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python
PostGIS на протяжении двух десятилетий завовевал известность как лучшее опенсорсное решение для анализа пространственных данных. В докладе я остановлюсь на продвинутом анализе пространственных данных с помощью PostGIS, расскажу о дальнейшем развитии с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.
Слайды
Видео
Другие доклады
-
Антон Дорошкевич Инфософт Руководитель отдела ИТ
1С-Батл. PostgreSQL vs MS SQL
Сравнение возможностей PostgreSQL и MS SQL для работы с 1С. Что даёт pg_restore для 1С-ника. Результаты нагрузочного тестирования "Восстановления последовательности партионного учёта" на базе 1С размером более 1 ТБ. 2 года, 500+ баз 1С, 4ТБ данных, Каскадная репликация - История одного Production 1C
-
Олег Бартунов Postgres Professional генеральный директорФедор Сигаев Postgres Professional технический директор, ведущий разработчик PostgreSQLАлександр Коротков Postgres Professional Руководитель разработки
Что нам ждать в PG 11?
10-я версия получилась богатой на новые фичи, но что же нас ожидает в новой 11 версии?
Мы расскажем последние новости из мира разработчиков постгреса, а именно: новые фичи, улучшения и развитие старых, прорывные разработки. Не все из них видны простому пользователю, но мы постараемся представить разработки ядра постгреса в простом и доступном виде.
-
Николай Рыжиков Health Samurai CTO
Использование PostgreSQL и Сlojure для разработки приложений, ориентированных на работу с базами данных
Если честно взглянуть на большинство наших бизнес-приложений, то они через провод собирают данные в базу и раздают их в обратном направлении. Что, если не пытаться воздвигать стену абстракций между приложением и базой данных (ORM), а постараться использовать их симбиоз - сильные стороны и индивидуальные особенности.
Я расскажу как мы используем postgresql и clojure для создания data intensive приложений для медицины.
- functional relational programming
- jsonb для моделирования сложной предметной области
- функциональные индексы и расширение json-knife для поиска в jsonb
- реализация graphql на postgres
- logical replication для построения реактивных интеграций
- асинхронный JDBC-free коннектор к postgresql на netty
-
Андрей Сальников Data Egret DBA
Практика обновления версий PostgreSQL
В большинстве своем, системные администраторы и ДБА бояться как огня делать мажорные обновления версий баз данных (RDBMS), особенно если эта база данных в эксплуатации и имеет достаточно высокую нагрузку. Главной причиной тому некоторый даунтайм базы данных, который всегда подразумевается при планировании таких работ.
На практике, такого рода upgrade занимает довольно длительное время и зачастую администраторам с малым опытом подобных операций приходится откатываться на старую версию баз данных из-за достаточно банальных ошибок, которые можно было бы избежать еще на этапе подготовки.
В Data Egret мы накопили огромный опыт проведения мажорных апгрейдов PostgreSQL в проектах, где нет права на ошибку. Я поделюсь своим опытом и расскажу о следующих шагах процесса: как правильно подготовиться к upgrade-у PostgreSQL? что необходимо сделать на этапе подготовки? как запланировать последовательность действий на сам upgrade? как провести процедуру upgrade-а успешно, без возврата на предыдущую версию бд? как минимизировать или вообще избежать простоя всей системы во время upgrade-а? какие действия необходимо выполнить после успешного upgrade-а PostgreSQL? Я также расскажу про две наиболее популярные процедуры апгрейда PostgreSQL - pg_upgrade и pg_dump/pg_restore, плюсы и минусы каждого из методов и расскажу про все типичные проблемы на всех этапах этой процедуры, и как их избежать.
Доклад будет интересен как новичкам так и тем ДБА которые уже давно работают с PostgreSQL, но хотят побольше узнать о том как правильно планировать и проводить upgrade максимально безболезненно.