Продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python
PostGIS на протяжении двух десятилетий завовевал известность как лучшее опенсорсное решение для анализа пространственных данных. В докладе я остановлюсь на продвинутом анализе пространственных данных с помощью PostGIS, расскажу о дальнейшем развитии с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.
Слайды
Видео
Другие доклады
-
Eren Basak Citus Data Software Development Engineer
Использование PITR в распределенных cистемах на базе PostgreSQL
В Postgres есть возможность восстановления данных на момент времени (PITR), которая позволяет нам "отправляться" в прошлое. В этом докладе мы обсудим, какие существуют основные сценарии использования этой функциональности, как подготовить базу данных к восстановлению на момент времени, настроив хорошую систему бэкапов и транcляции WAL-файлов, а также рассмотрим конкретные примеры. Мы подробнее остановимся на том, как применять PITR на распределенных системах и кластерах с шардингом, затронув типичные проблемы подобных конфигураций, такие как разница во времени, и предложим возможные способы их решения - например, двухфазный коммит и pg_create_restore_point.
-
Андрей Зубков ООО "Пармалогика" Администратор баз данных
Инструмент анализа исторической нагрузки или "AWR для Postgres"
Администратор баз данных регулярно сталкивается с необходимостью поиска проблемных запросов в своих базах данных. Для оперативного поиска хорошо подходит PGCenter, но что делать если проблемы производительности наблюдались в прошлом? В этом докладе я хочу поделиться своим опытом разработки и применения инструментария, позволяющего производить ретроспективный анализ нагрузки запросов в базах данных PostgreSQL - pg_profile
-
Алексей Клюкин Zalando SE Database EngineerАлександр Кукушкин Zalando SE Database Engineer
Мастер-класс: Управление высокодоступными PostgreSQL кластерами с помощью Patroni
Patroni - это Python-приложение для создания высокодоступных PostgreSQL кластеров на основе потоковой репликации. Оно используется такими компаниями как Red Hat, IBM Compose, Zalando и многими другими. С его помощью можно преобразовать систему из ведущего и ведомых узлов (primary - replica) в высокодоступный кластер с поддержкой автоматического контролируемого (switchover) и аварийного (failover) переключения. Patroni позволяет легко добавлять новые реплики в существующий кластер, поддерживает динамическое изменение конфигурации PostgreSQL одновременно на всех узлах кластера и множество других возможностей, таких как синхронная репликация, настраиваемые действия при переключении узлов, REST API, возможность запуска пользовательских команд для создания реплики вместо pg_basebackup, взаимодействие с Kubernetes и т.д.
Слушатели мастер-класса подробно узнают, как работает Patroni, получат практические навыки настройки высокодоступных кластеров на его основе, познакомятся с различными дополнительными возможностями и поучаствуют в диагностике проблем. Будут рассмотрены следующие темы:
- область применения: какие задачи HA успешно решаются Patroni
- обзор архитектуры
- создание тестового кластера
- утилита patronictl
- изменение конфигурации PostgreSQL для кластера, управляемого Patroni
- мониторинг с помощью API
- подходы к переключению клиентов
- дополнительные возможности: ручное переключение, перезагрузка по расписанию, режим паузы
- настройка синхронной репликации
- расширяемость и универсальность
- частые ошибки и их диагностика
Для полного участия в мастер-классе вам понадобится ноутбук с установленным git, vagrant и virtual box.
Vagrant можно загрузить со страницы https://www.vagrantup.com или установить с помощью пакетов в вашем дистрибутиве. Virtualbox: https://www.vagrantup.com
После установки Vagrant и Virtualbox нужно выполнить:
$ git clone https://github.com/alexeyklyukin/patroni-training $ cd patroni-training $ vagrant up
После того, как patroni box поднимется и установит необходимые пакеты к нему можно подключиться с помощью vagrant ssh.
-
Вадим Яценко Tantor Lab Генеральный директорСергей Ким Ingram Micro Cloud Software Architect
PostgreSQL High Availability кластер для Enterprise
В последнее время PostgreSQL все чаще используется для Enterprise. Наша компания Ingram Micro Cloud была одной из первых, кто сделал это. Мы уже много лет используем PostgreSQL в качестве основной СУБД для наших продуктов. В докладе мы хотим рассказать об эволюции нашего High Availability (HA) кластера PostgreSQL: как мы в сжатые сроки внедряли решение на pgpool-II, писали failover сценарии, тестировали Postgres-XL и придумывали необычные конфигурации Stolon. Немного поговорим о проблемах балансировки нагрузки, пуллинга соединений и бекапировании.