title

text

Брюс Момжиан
Брюс Момжиан EnterpriseDB Senior Database Architect
14:00 05 февраля
180 мин

Изучаем CTE и оконные функции

От разработчиков часто требуются результаты, которые трудно получить обычными SQL-запросами. К счастью, стандартом SQL предусмотрены мощные средства - общие табличные выражения (CTE) и оконные функции, который весьма расширяют круг возможного.

SQL является декларативным языком, что означает, что пользователь только формирует запрос, с база данных определяет, как его следует оптимально исполнять. CTE позволяют запросам быть более императивными, дают возможность организовать циклы и обработку иерархических структур, что обычно делается только в императивных языках.

Обычные SQL-запросы возвращают наборы строк, в которых одна строка не зависит от других. Оконные функции позволяют добавлять в запрос поля, значения которых зависят от других строк.

Этот мастер-класс поможет прикладным разработчикам в использовании CTE, что позволит перенести часть логики из приложения в SQL-код, и разъяснит возможности оконных функций и особенности их использования.

Видео

Часть I «Programming the SQL Way with CTE»


Часть II «Postgres Window Magic»


Слайды

Другие доклады

  • Константин Книжник
    Константин Книжник Postgres Professional Ведущий разработчик
    45 мин

    VOPS: Векторное расширение Постгреса

    СУБД Постгрес успешно используется во многих OLTP приложениях, выполняющих большое число простых запросов. Но для аналитики, требующей обработки большого количества данных, Постгрес на порядки отстаёт от специализированных СУБД, оптимизированных для массовой обработки данных. Скорость работы Постгреса для OLAP запросов сдерживается следующими факторами:

    • Большие накладные расходы на распаковку записей.
    • Затраты на интерпретацию запроса (Постгрес интерпретирует план выполнения запроса)
    • Поддержка работы с абстрактными типами
    • Недостатки PULL модели выполнения запроса
    • Издержки MVCC

    Все эти проблемы могут быть в большой степени решены за счёт использования векторного исполнителя запросов, который за одну операцию в состоянии обработать целый блок (вектор) значений. В этом докладе описывается способ добавления векторных операций в Посгрес, с помощью стандартного механизма расширения Посгреса, без внесения изменений в ядро. Такие механизмы Посгреса как UDT (определяемые пользователем типы), FDW (абстракция внешнего поставщика данных), расширения исполнителя запросов позволяют реализовать в Постгресе вертикальный таблицы, с которыми можно работать как с обычными таблицами. Но на порядки быстрее благодаря использованию векторных операций.

  • Дмитрий Кремер
    Дмитрий Кремер МИА "Россия Сегодня" Администратор баз данных
    22 мин

    Особенности мониторинга и траблшутинга высоконагруженной БД PostgreSQL

    База данных - один из ключевых компонентов в любой информационной системе, требующий мониторинга множества метрик. В докладе освещены примеры и подходы мониторинга и анализа производительности PostgreSQL, которые позволяют минимизировать нагрузку на сервер баз данных со стороны системы мониторинга и сбора данных для последующего анализа проблемных ситуаций:

    • Квантовые эффекты или как наблюдатель влияет на наблюдаемую систему
    • Особенности сбора метрик при мониторинге БД с помощю Zabbix
    • Сбор данных для аналитики и визуализации запросов PostgreSQL с помощью rsyslog + kafka + clickhouse + grafana.
    • Инструменты оперативного анализа лог-файлов БД

  • Olivier Courtin
    Olivier Courtin DataPink Owner & DataScientist
    180 мин

    Мастер-класс: продвинутый анализ пространственных данных с помощью PostgreSQL, PostGIS и Python

    На мастер-классе будут рассмотрены: продвинутый анализ пространственных данных на чистом PostGIS, включая новейшие функции PostGIS; приведение в соответствие разных типов данных в PostgreSQL и Python (массивы в NumPy, таблицы в Pandas); секреты эффективной работы с инструментами и средами обработки данных (Jupyter, dataviz и др.); дальнейшее развитие с помощью GeoDataScience, библиотек и фреймворков Python, сочетаемых с PostgreSQL/PostGIS, включая технологии машинного и глубокого обучения.

  • Валерий Косарев
    Валерий Косарев - начальник отдела
    22 мин

    Подключаемое хранилище для больших объектов

    Хранение бинарных данных в таблицах базы данных иногда является хорошим решением для конкретного проекта. Но иногда, в силу изменения условий или недостаточной проработки решения, такое хранение становится настоящей головной болью. И даже если есть понимание, как и где нужно разместить такие данные, переход к новым решениям зачастую очень не прост, часто требуется доработка в прикладном коде и останов системы для миграции. В докладе представляется частное решение подобной проблемы. Разработанный extension позволяет освободить базу от таких данных, перекладывая бинарные данные в хранилище Ceph и не только. Причем прозрачно для приложений.