title

text

Александр Коротков
Александр Коротков Postgres Professional Руководитель разработки
13:00 05 февраля
45 мин

Что PostgreSQL 12 нам готовит?

"Заморозка разработки" (feature freeze) PostgreSQL 12 запланирована на апрель 2019, который ещё не настал. Но контуры будущего релиза уже проступают. В данном доклае я расскажу о том, что уже попало в PostgreSQL 12, а также о том что с большой вероятностью может туда попасть. С особым пристрастием расскажу про SQL/JSON, Merge, pluggable table access methods и zheap.

слайды

Видео

Другие доклады

  • Борис Ещенко
    Борис Ещенко Commvault Технический консультант
    22 мин

    Управление и защита PostgreSQL c помощью Commvault

    Надежное резервное копирование и восстановление данных уровня предприятия для среды PostgreSQL. Больше никаких традиционных резервных копий. Технология CBT (Change Block Tracking) - это следующее поколение инкрементного резервного копирования. Быстрее, чем моментальные снимки, CBT создает резервные копии только блоков, которые изменяются, а не всех ваших данных, уменьшая нагрузку на сервер и сетевой трафик и устраняя необходимость в традиционных резервных копиях. Преимущества: • Защита данных в режиме близком к Real-Time • Обновление с легкостью

  • Christopher Travers
    Christopher Travers Adjust GmbH Администратор баз данных
    45 мин

    Восстановление данных в PostgreSQL при поврежденной файловой системе

    Данное тематическое исследование посвящено разбору случая, когда мы решили приложить усилия к восстановлению данных. Доклад подойдет для всех пользователей: как для новичков, так и для продвинутых администраторов баз данных PostgreSQL. Начинающие пользователи получат понимание того, что представляет собой восстановление данных и чем оно не является, чего можно ожидать, каким образом построить работу с привлеченными экспертами, чтобы получить на выходе наилучший результат. В тоже время, более продвинутые пользователи и эксперты PostgreSQL также получат честную порцию технических аспектов.

  • Антон Дорошкевич
    Антон Дорошкевич ИнфоСофт Руководитель Отдела-ИТ
    22 мин

    Первый в России BlockChain на 1С+PostgreSQL

    В ходе доклада хотелось бы поделиться опытом реализации BlockChain в реальной бизнес-задаче на базе 1С+PostgreSQL. Откуда возникла такая задача? От кого защищаем данные с помощью технологии? Как получать отчёт о целостности цепочки в десятки миллионов записей за считанные секунды?

  • Эстебан Зимани
    Эстебан Зимани ULB Профессор
    45 мин

    MobilityDB: расширение PostgreSQL для управления мобильными данными

    В ходе доклада мы представим MobilityDB - расширение PostgreSQL, которое раздвигает границы системы типов в PostgreSQL и PostGIS на абстрактные данные для адекватного представления изменяющихся данных об объектах. Эти типы данных могут представлять эволюцию во времени значений некоторого типа элементов, называемого базовым темпоральным типом. Например, темпоральный целочисленный тип данных может использоваться для демонстрации изменения во времени количества сотрудников департамента. В данном случае базовым типом данных будет целочисленный или темпоральный целочисленный. Аналогично, темпоральный тип данных с плавающей точкой может использоваться для записи изменения во времени температуры в помещении или местоположения автомобиля по GPS-координатам. Темпоральные типы данных оказываются полезны, поскольку для работы многих приложений, например, мобильных, принципиально необходимо обрабатывать изменяющиеся во времени величины.

    В расширении MobilityDB темпоральные типы данных основаны на булевых, целочисленных, с плавающей точкой и текстовых типах данных от PostgreSQL, а также на геометрических и географических типах данных от PostGIS (ограниченных размерностью 2D или 3D). MobilityDB соответствует действующим стандартам по перемещаемым объектам OGC http://www.opengeospatial.org/standards/movingfeatures, в частности, OGC Moving Features Access, в котором определены операции, применимые к изменяющимся во времени геометриям.

    Для проведения разноообрзаных операций над темпоральными типами данных доступен богатый набор функций и операторов. В общем случае они разделюятся на три типа:

    • Пожизненные функции и операторы: операторы над базовыми типами (такие как арифметические операции над целыми числами и числами с плавающей точкой, пространственные отношения и расстояния для геометрий) интуитивно обобщаются на случай изменяющихся во времени значений. Пространственно-темпоральные функции в MobilityDB обобщают пространственные функции PostGIS как для геометрических, так и для географических типов данных, к примеру для "ST_Intersection". На базовом уровне, MobilityDB принимает в расчет аспект темпоральности и делегирует обработку пространственных данных в PostGIS.
    • Темпоральные функции и операторы обрабатывают изменяющиеся во времени размерности величины, которая может представлять собой единичное значение, диапазон значений, массив значений или массив диапазонов. Примерами являются функции периодов, которые ограничивают темпоральный тип заданным массивом временных диапазонов, а также функции продолжительности, которые извлекают время определения значения величины.
    • Пространственно-темпоральные функции и операторы - в эту категорию попадают все остальные функции. Примеры: speed(tgeompoint/tgeogpoint), azimuth(tgeompoint/tgeogpoint), maxValue(tfloat/tint), взвешенное по времени среднее twAvg(tfloat) и т.д.

    Как GiST, так и SP-GiST индексы были расширены для поддержки темпоральных типов данных. Индекс GiST реализует R-дерево для темпоральных численно-буквенных типов данных, а TB-дерево - для темпоральных координат. Индекс SP-GiST реализует Quad-дерево для темпоральных численно-буквенных типов данных, а Oct-дерево - для темпоральных координат. Подход, использованный в MobilityDB при разработке SP-GIST индекса, позволил нам добавить индексы SP-GIST для двумерных, трехмерных и n-мерных геометрий в PostGIS.

    Доступны два типа числовых функций аггрегирования. В дополнение к традиционным функциям min, max, count, sum, and avg, теперь есть и их оконные версии (также известные как кумулятивные). Для заданного промежутка времени w, оконная аггрегативная функция вычисляет значение функции в момент времени t, принимая в расчет значения на интервале [t − w, t]. В противоположность стандартной аггрегации, темпоральная аггрегация может возвращать результат большего размера, чем входящие данные. По этой причине темпоральные функции аггрегирования были подвергнуты жесткой оптимизации, чтобы обеспечить их эффективную работу.

    В MobilityDB также есть предварительная реализация функций сбора статистики и селективности для темпоральных типов данных.

    С точки зрения размера, расширение состоит из 67k строк кода на C, 19k строк SQL кода и 67k строк модульных тестов SQL. В нем определены 40 типов, 2300 функций и 1350 операторов.

    В ходе доклада будет проиллюстрирована пространственно-темпоральная концепция и модель данных для темпорального типа. Кратко остановимся на основных компонентах MobilityDB: индексах, аггрегировании, функциях и операторах, а также SQL-интерфейсе. Рассказ будет дополнен примерами запросов и практических случаев использования. Также будет рассказано о текущем статусе проекта MobilityDB и планируемых разработках.