
ORM: как писать запросы и не сводить с ума СУБД
Многие специалисты, обслуживающие СУБД не любят эти три буквы - ORM, потому что не раз видели сгенерированные многоэтажные запросы для простейших операций. Однако, практика показывает, что источник проблемы - не ORM, а разработчики, не умеющие ими пользоваться. В этом докладе я расскажу основные принципы, как писать код для ORM, генерирующий «хорошие» запросы, а также покажу «плохие» примеры кода, и что из них получается на выходе. Основные идеи – при написании кода мыслить в SQL, научиться заранее видеть, какой запрос будет сгенерирован. Но даже обретя такой навык нужно всегда проверять выходной SQL для сложных запросов. Приведу конкретный пример, когда незначительное изменение в ORM-логике меняет объём выходного SQL в десятки(!) раз. Расскажу о дополнительных инструментах и хитростях. А именно – отключение трекинга, конструкция Include, разный синтаксис для JOIN, как получить больше данных за меньшее число запросов, как эффективно писать запросы с группировкой, и зачем нужны проекции. Не обойду стороной и случаи, когда эффективно решить задачу средствами ORM не получается (например, запросы с рекурсией). Кроме SELECT-запросов немного расскажу о средствах Batch-Update/Delete, позволяющих обновлять и удалять данные средствами ORM без загрузки на клиент. Несколько слов будет и о вставке – как заставить ORM быстро вставлять большие объёмы данных через Multi-Insert и COPY. Будет упомянуто и о поддержке в ORM специфичных для PostgreSQL типов данных – массивов, hstore и jsonb. Может возникнуть вопрос – а есть ли вообще смысл использовать ORM, раз нужно столькому научиться. Преимущества их использования есть, и об этом тоже будет сказано. Все примеры будут на технологии Entity Framework для платформ .Net Core и .Net Framework на языке C#. Для Hibernate/NHibernate могут быть отличия в некоторых тонкостях, но основные принципы те же, поэтому доклад будет полезен разработчикам, использующим различные технологии.
Слайды
Видео
Другие доклады
-
Андрей Бородин Яндекс Разработчик
DIY индекс
В докладе я расскажу об актуальных технологиях в области индексов общего назначения в РСУБД. Обсудим различные подходы, делающие индексы быстрее для различных типов нагрузки. Поговорим о том, какие вещи приходят к нам из академических исследований и какие находят отклик среди разработчиков, со стороны сообществ и крупных компаний. Будет небольшая live-код сессия по созданию DIY индекса в PostgreSQL.
-
Александр Любушкин ООО "ФОРС Телеком" Технический директорРустам Абдрахимов ООО Форс-Телеком Главный эксперт
Live Universal Interface (LUI) - средство коллективной разработки WEB-интерфейса прикладных систем для Postgres
В нашей компании разработан программный продукт Live Universal Interface (LUI), - инструмент для быстрого создания и изменения унифицированных экранных форм для WEB-браузеров без компиляции программного кода, при этом достаточно знать только SQL.
LUI нацелен на сегменты В2В, В2G, G2C и B2C, и предназначен для использования в системах биллинга, управления финансами, учета и контроля производства, где необходимо решать, в первую очередь, функциональные задачи, а не демонстрировать излишние графические элементы.
Коллективная разработка обеспечивается хранением всего объема наработок в базе данных, которая может располагаться как на корпоративном сервере, так и в «облаке» на сторонней площадке.
-
Андрей Фефелов Mastery.pro Технический директор
Как мы выбирали среди patroni, stolon, repmgr для нашего отказоустойчивого Постгреса
Для одного из наших проектов понадобилось решать задачу построения отказоустойчивой БД, желательно к тому же географический распределенной.
Первое на что мы посмотрели - это облачные решения от большой тройки, однако, стоимость их эксплуатации превзошла все наши скромные ожидания. К тому же у нас есть всякие штуки вроде экстеншенов и londiste репликации, и они не совместимы с тем, что предлагают облака.
В докладе я расскажу о том, почему мы остановились на patroni, на какие грабли наступили и какие у него есть неочевидные, но прикольные штуки, которые сильно облегчают жизнь.
-
Julien Rouhaud Разработчик
HypoPG 2: поддержка гипотетического секционирования в PostgreSQL
Декларативное секционирование было долгожданной фичей, которая претерпела улучшение с момента ее появления в релизе PostgreSQL 10. Однако для многих пользователей нахождение оптимальных схем секционирования, дающих наибольший эффект, все еще является нелегкой задачей. По этой причине мы добавили в HypoPG новую фичу гипотетического секционирования, которая помогает пользователям проектировать схему секционирования. В ходе презентации я сделаю небольшое введение в HypoPG и декларативное секционирование, а затем покажу применение гипотетического секционирования и объясню, как работает расширение.