title

text

Алексей Фадеев
Алексей Фадеев Sibedge Старший разработчик .NET, евангелист Postgres.
: декабря
45 мин

ORM: как писать запросы и не сводить с ума СУБД

Многие специалисты, обслуживающие СУБД не любят эти три буквы - ORM, потому что не раз видели сгенерированные многоэтажные запросы для простейших операций. Однако, практика показывает, что источник проблемы - не ORM, а разработчики, не умеющие ими пользоваться. В этом докладе я расскажу основные принципы, как писать код для ORM, генерирующий «хорошие» запросы, а также покажу «плохие» примеры кода, и что из них получается на выходе. Основные идеи – при написании кода мыслить в SQL, научиться заранее видеть, какой запрос будет сгенерирован. Но даже обретя такой навык нужно всегда проверять выходной SQL для сложных запросов. Приведу конкретный пример, когда незначительное изменение в ORM-логике меняет объём выходного SQL в десятки(!) раз. Расскажу о дополнительных инструментах и хитростях. А именно – отключение трекинга, конструкция Include, разный синтаксис для JOIN, как получить больше данных за меньшее число запросов, как эффективно писать запросы с группировкой, и зачем нужны проекции. Не обойду стороной и случаи, когда эффективно решить задачу средствами ORM не получается (например, запросы с рекурсией). Кроме SELECT-запросов немного расскажу о средствах Batch-Update/Delete, позволяющих обновлять и удалять данные средствами ORM без загрузки на клиент. Несколько слов будет и о вставке – как заставить ORM быстро вставлять большие объёмы данных через Multi-Insert и COPY. Будет упомянуто и о поддержке в ORM специфичных для PostgreSQL типов данных – массивов, hstore и jsonb. Может возникнуть вопрос – а есть ли вообще смысл использовать ORM, раз нужно столькому научиться. Преимущества их использования есть, и об этом тоже будет сказано. Все примеры будут на технологии Entity Framework для платформ .Net Core и .Net Framework на языке C#. Для Hibernate/NHibernate могут быть отличия в некоторых тонкостях, но основные принципы те же, поэтому доклад будет полезен разработчикам, использующим различные технологии.

Слайды

Видео

Другие доклады

  • Вадим Подольный
    Вадим Подольный АО "РАСУ" Независимый эксперт
    45 мин

    Высоконагруженная распределенная система управления современной АЭС

    В докладе будет представлена новая платформа распределенной системы управления АЭС.

    Вы узнаете, как обеспечивается управление сложнейшими объектами автоматизации в мире. В режиме жесткого реального времени обеспечивается работа более 150 специальных подсистем, управляющих различными технологическими процессами АЭС, таких как система управления реактором мощностью выше 1000 МВт и турбиной весом более 2000 тонн. Более 100К источников данных от датчиков и до 500К расчетных параметров. 5 разновидностей физических процессов: нейтронная кинетика, гидродинамика, химия и радиохимия и физика прочности.

    При некоторых отклонениях вся система превращается в огромный источник DDoS полезной диагностической информации, которой всегда больше, чем способна переварить сеть и вычислительные ресурсы автоматизированной системы, что мешает нормальному управлению объектом. Вы узнаете, как мы «разруливаем» такие проблемы.

    Из доклада вы узнаете об аппаратной и программной архитектуре таких систем, узнаете, как обеспечивается резервирование и репликация данных в таких системах, зачем нужна избыточность данных и технологическое разнообразие. Как обеспечивается управление нагрузками, как устроен QoS. И что будет, если отключится система нормальной эксплуатации, как, например было на Фукусиме.

    Но мы все же про кодинг. Никаких SSD и HDD, только InMemory, структуры данных из десятков миллионов элементов, забудьте про кэш процессора, он не работает. Ваш новый Xeon 4-го поколения потерял все преимущества и превратился в "тыкву", поэтому закатываем рукава и ковыряемся в таймингах, жесточайшей аcинхронике и выжимаем из железа максимум. Кто слабое звено - процессор, память, ОС или сеть. Выясняем это.

  • Константин Евтеев
    Константин Евтеев X5 FoodTech Главный архитектор
    45 мин

    Стендбай в бою

    В докладе рассмотрю различные варианты использования и конфигурацию standby сервера. Расскажу о том, как сделать standby, согласованный с вашим архивом, чтобы после аварии primary и промотирования standby сервера новый стендбай можно было пересоздать из архива. Слушатели познакомятся с опытом Avito: как использовать standby для read-only запросов, какие возникали проблемы и как мы их решили. Поговорю про мониторинг standby - на какие метрики стоит обратить внимание.

  • Александр Шелудченков
    Александр Шелудченков ГК "Митра" Программист
    22 мин

    Нестандартный кластер 1C

    • Перенос стандартного кластера 1С в MPI окружение - "миграция сервисов между машинами".
    • Перенос postgreSQL на GPU.

  • Esteban Zimányi
    Esteban Zimányi ULB Professor
    45 мин

    MobilityDB: расширение PostgreSQL для управления мобильными данными

    В ходе доклада мы представим MobilityDB - расширение PostgreSQL, которое раздвигает границы системы типов в PostgreSQL и PostGIS на абстрактные данные для адекватного представления изменяющихся данных об объектах. Эти типы данных могут представлять эволюцию во времени значений некоторого типа элементов, называемого базовым темпоральным типом. Например, темпоральный целочисленный тип данных может использоваться для демонстрации изменения во времени количества сотрудников департамента. В данном случае базовым типом данных будет целочисленный или темпоральный целочисленный. Аналогично, темпоральный тип данных с плавающей точкой может использоваться для записи изменения во времени температуры в помещении или местоположения автомобиля по GPS-координатам. Темпоральные типы данных оказываются полезны, поскольку для работы многих приложений, например, мобильных, принципиально необходимо обрабатывать изменяющиеся во времени величины.

    В расширении MobilityDB темпоральные типы данных основаны на булевых, целочисленных, с плавающей точкой и текстовых типах данных от PostgreSQL, а также на геометрических и географических типах данных от PostGIS (ограниченных размерностью 2D или 3D). MobilityDB соответствует действующим стандартам по перемещаемым объектам OGC http://www.opengeospatial.org/standards/movingfeatures, в частности, OGC Moving Features Access, в котором определены операции, применимые к изменяющимся во времени геометриям.

    Для проведения разноообрзаных операций над темпоральными типами данных доступен богатый набор функций и операторов. В общем случае они разделюятся на три типа:

    • Пожизненные функции и операторы: операторы над базовыми типами (такие как арифметические операции над целыми числами и числами с плавающей точкой, пространственные отношения и расстояния для геометрий) интуитивно обобщаются на случай изменяющихся во времени значений. Пространственно-темпоральные функции в MobilityDB обобщают пространственные функции PostGIS как для геометрических, так и для географических типов данных, к примеру для "ST_Intersection". На базовом уровне, MobilityDB принимает в расчет аспект темпоральности и делегирует обработку пространственных данных в PostGIS.
    • Темпоральные функции и операторы обрабатывают изменяющиеся во времени размерности величины, которая может представлять собой единичное значение, диапазон значений, массив значений или массив диапазонов. Примерами являются функции периодов, которые ограничивают темпоральный тип заданным массивом временных диапазонов, а также функции продолжительности, которые извлекают время определения значения величины.
    • Пространственно-темпоральные функции и операторы - в эту категорию попадают все остальные функции. Примеры: speed(tgeompoint/tgeogpoint), azimuth(tgeompoint/tgeogpoint), maxValue(tfloat/tint), взвешенное по времени среднее twAvg(tfloat) и т.д.

    Как GiST, так и SP-GiST индексы были расширены для поддержки темпоральных типов данных. Индекс GiST реализует R-дерево для темпоральных численно-буквенных типов данных, а TB-дерево - для темпоральных координат. Индекс SP-GiST реализует Quad-дерево для темпоральных численно-буквенных типов данных, а Oct-дерево - для темпоральных координат. Подход, использованный в MobilityDB при разработке SP-GIST индекса, позволил нам добавить индексы SP-GIST для двумерных, трехмерных и n-мерных геометрий в PostGIS.

    Доступны два типа числовых функций аггрегирования. В дополнение к традиционным функциям min, max, count, sum, and avg, теперь есть и их оконные версии (также известные как кумулятивные). Для заданного промежутка времени w, оконная аггрегативная функция вычисляет значение функции в момент времени t, принимая в расчет значения на интервале [t − w, t]. В противоположность стандартной аггрегации, темпоральная аггрегация может возвращать результат большего размера, чем входящие данные. По этой причине темпоральные функции аггрегирования были подвергнуты жесткой оптимизации, чтобы обеспечить их эффективную работу.

    В MobilityDB также есть предварительная реализация функций сбора статистики и селективности для темпоральных типов данных.

    С точки зрения размера, расширение состоит из 67k строк кода на C, 19k строк SQL кода и 67k строк модульных тестов SQL. В нем определены 40 типов, 2300 функций и 1350 операторов.

    В ходе доклада будет проиллюстрирована пространственно-темпоральная концепция и модель данных для темпорального типа. Кратко остановимся на основных компонентах MobilityDB: индексах, аггрегировании, функциях и операторах, а также SQL-интерфейсе. Рассказ будет дополнен примерами запросов и практических случаев использования. Также будет рассказано о текущем статусе проекта MobilityDB и планируемых разработках.