title

text

Денис Смирнов
Денис Смирнов КГБУЗ КДЦ Вивея программист
15:45 06 февраля
45 мин

Greenplum: внутреннее устройство MPP PostgreSQL для аналитики

PostgreSQL архитектурно является классической вертикально-масштабируемая СУБД для OLTP нагрузок. Параллельно с PostgreSQL много лет существует его альтернативная горизонтально-масштабируемая MPP версия Greenplum, заточенная под большие данные и OLAP нагрузку. В докладе будет рассказано про внутреннее устройство Greenplum (распределенные транзакции, шардирование данных, секционирование с гибридным хранением во внешних системах, колоночные движки хранения со сжатием и много другое), проведено сравнение с внутренним устройством PostgreSQL и показаны области применения каждого решения.

слайды

Видео

Другие доклады

  • Дмитрий Белявский
    Дмитрий Белявский ТЦИ Ведущий специалист
    Федор Сигаев
    Федор Сигаев Postgres Professional технический директор, ведущий разработчик PostgreSQL
    22 мин

    LTREE: расширяем синтаксис

    В конце прошлого года мне поступил заказ на доработку расширения ltree с более полным набором символов. Доклад рассказывает о

    • изначальном состоянии расширения
    • расширенном синтаксисе
    • процессе доработки и тестирования расширения.

  • Юрий Жуковец
    Юрий Жуковец ЗАО Дилжитал-Дизайн Архитектор ПО
    22 мин

    Технические особенности портирования T-SQL кода на plpgsql и данных из MS SQL в PG на примере перевода СЭДО «Приоритет» на Postgres

    Доклад посвящен продолжению проекта по переводу нашей системы электронного документооборота «Приоритет» с MS SQL на Postgres. Будут затронуты технические решения и моменты переписывания с T-SQL на plpgsql, оптимизации результативного кода и переноса данных. Дополнительно рассмотрим аспекты тестирования производительности с точки зрения поиска «плохого кода» pgplsql как кандидата на оптимизацию. Основная задача презентации - ответить на вопрос: "У нас так на T-SQL - как это перенести на PG?". Доклад предназначается для начинающих разработчиков на Postgres и является продолжением предыдущего доклада сделанного на конференции в 2017 (https://youtu.be/v6_4Szr8t14).

  • Александр Коротков
    Александр Коротков Postgres Professional Руководитель разработки
    45 мин

    Узкие места PostgreSQL

    Хорошо, когда база работает предсказуемо. Если сервер не справляется с нагрузкой, то только знай добавляй процессорные ядра, терабайты оперативной памяти и миллионы IOPS'ов – всё станет хорошо. Гораздо неприятнее, когда у сервера куча свободных ресурсов, но база данных всё равно тормозит. И особенно обидно, когда при нагрузочном тестировании всё работало как часы, а при реальной нагрузке такого же объёма – встаёт колом.

    В данном докладе я разберу "узкие места" постгреса, которые нам приходилось встречать в реальной жизни, и которые приводили к печальному поведению, как описано выше. Расскажу о том, что можно сделать на пользовательском уровне, что эти "узкие места" обойти, и о том, что планируют сделать разработчики, чтобы их вообще убрать. А также поделюсь некоторыми рецептами нагрузочного тестирования, которые помогут избежать неожиданностей в продакшене.

  • T
    Tatsuro Yamada NTT Comware Ведущий специалист по базам данных
    22 мин

    Настройка автопланировщика с использованием цикла обратной связи

    При OLAP и пакетной обрабокте данных часто наблюдается ситуация, что чем сложее запрос (содержит много джойнов, фильтров и аггрегативных функций), тем выше вероятность ошибок в оценке количества строк, в результате чего планировщик выбирает неэффективный план исполнения запроса.

    Для того, чтобы решить эту проблему, я разработал инструмент под названием pg_plan_advsr - это расширение для PostgreSQL, которое исправляет ошибки оценки путем неоднократного возвращения в планировщик информации, собранной в ходе исполнения запроса.

    Расширение содержит три фичи:

    1. Автоматическая оптимизация плана запроса за счет неоднократного возвращения информации о ходе выполнения запроса в планировщик.
    2. Сохранение всех выработанных при оптимизации планов запросов в таблицу истории.
    3. Создание и сохранение хинтов оптимизатора с тем, чтобы иметь возможность воспроизвести выработанные планы исполнения запросов в процессе настройки.

    Я верифицировал эффективность pg_plan_advsr путем запуска join order benchmark (JOB) на PG 10.4, в ходе чего наблюдалось сокращение времени исполнения запроса до 50% от первоначального. Таким образом, расширение будет полезно пользователям, который хотят настроить планировщик для OLAP и пакетной обработки данных.

    В ходе презентации я расскажу о следующие моментах:

    • Принципы построения и архитектура pg_plan_advsr.
    • Подробная информация о результатах тестирования JOB.
    • Направления улучшений в будущем.
    • Совместное использование расширений aqo и pg_plan_advsr together (экспериментальное).